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Abstract

Bela, Renan Vieira; Pesco, Sinesio (Advisor); Barreto Jr., Abelardo
Borges (Co-Advisor). Pressure Transient Analysis for Injec-
tivity Tests in Multilayer Reservoirs. Rio de Janeiro, 2021.
83p. Tese de Doutorado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

Analytical models that describe the pressure behavior are extremely
useful for pressure transient analysis and reservoir characterization as they
provide estimates of reservoir parameters. This work has two main goals:
first, to extend the existing solutions for injectivity/falloff tests in single-layer
formations with horizontal wells so that they can be applied to multilayer
stratified reservoirs with multilateral horizontal wells. Furthermore, this work
applies impulse functions to obtain an alternative formulation for injectivity
tests in multilayer commingled formations with vertical wells and single-layer
reservoirs with horizontal wells.

Keywords
Injectivity Tests; Pressure Transient Analysis; Stratified Reservoirs;

Analytical Modeling; Green’s Functions.
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Resumo

Bela, Renan Vieira; Pesco, Sinesio; Barreto Jr., Abelardo Borges.
Análise dos Dados Transientes de Pressão durante Testes
de Injetividade em Reservatórios Multicamadas. Rio de Ja-
neiro, 2021. 83p. Tese de Doutorado – Departamento de Matemá-
tica, Pontifícia Universidade Católica do Rio de Janeiro.

Modelos analíticos que descrevam o comportamento da pressão são de
extrema utilidade na área de avaliação de formações e caracterização de
reservatório, pois eles fornecem estimativas sobre diversos parâmetros do
reservatório. Este trabalho tem dois objetivos principais: primeiro, estender a
solução existente para testes de injetividade e falloff em reservatórios com uma
camada e poços horizontais de modo que ela possa ser aplicada também em
formações multicamadas com poços horizontais multirramificados. Além disso,
este trabalho aplica funções impulso para obter uma formulação alternativa
para testes de injetividade em reservatórios estratificados com poços verticais
e formações com uma camada e poços horizontais.

Palavras-chave
Testes de Injetividade; Análise de Transiente de Pressão; Reservatórios

Estratificados; Formulação Analítica; Funções de Green.
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1
Introduction

Pressure transient analysis is crucial in reservoir engineering, as it pro-
vides valuable estimates about reservoir features and parameters. Adequate
reservoir resources management relies on knowledge regarding its parameters,
such as permeability and extension.

One conventional way to estimate those parameters consists of well
testing, during which fluid is removed from the reservoir and pressure data are
measured. At a first stage, the wellbore is open, fluid is produced (preferably at
a specified constant production rate) and, thus, pressure decreases. Afterwards,
the wellbore is shut in and pressure rises [1, 2, 3, 4]. Those flow periods
are called drawdown and buildup, respectively [2, 5, 6]. Fig. 1.1 portrays a
qualitative representation of the pressure behavior that is observed during a
conventional well testing.

Injectivity tests are an alternative to conventional well testing [1, 7, 8].
This procedure is based on pressure transient analysis due to the injection of
an external fluid into the reservoir [9, 10]. Injectivity tests have gained more
attention recently, as they are operationally safer and avoid dealing with the
produced fluid disposal or flaring - hence, presenting lower environmental im-
pact than conventional well testing [7, 8]. The reduced carbon footprint com-
pared to conventional well testing becomes particularly important considering
that many oil field companies committed to substantially decrease greenhouse
gas emissions in a foreseeable future.

Analogously to well testing, two distinct stages are also observed at an
injectivity test: injection and falloff. During the former, a fluid is injected into
the reservoir and pressure rises. The latter is identified by a pressure drop,
after the well is shut [11, 12]. In Fig. 1.2, a qualitative representation of the
pressure behavior measured during an injectivity test may be found.

Although flow simulators may be employed to model multiphase flow, the
numerical simulation may be computationally expensive. Moreover, finding
appropriate spatial gridding schemes and time step sizes to obtain accurate
pressure transient data under such conditions is not an easy task. Besides,
flow simulators may not be easily coupled with nonlinear regression methods.

To get around those setbacks, analytical models that accurately describe
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Chapter 1. Introduction 14

Figure 1.1: General pressure behavior during a conventional well testing

the pressure behavior may be employed to obtain relevant insights regarding
reservoir features and estimate its parameters. Besides, analytical solutions
are effortlessly coupled with nonlinear regression techniques and optimization
methods [13, 14].

The Thompson and Reynolds’ [15] steady-state theory has been used as
basis for the development of analytical solutions for injectivity tests in single-
[9, 11] and multilayer reservoirs [12, 16] with vertical wells. In reservoirs with
horizontal wells, on the other hand, currently existing analytical solutions can
only describe the pressure behavior in single-layer reservoirs [10, 11, 17].

Furthermore, formulations based on the Thompson and Reynolds’ [15]
theory consider that the rate transient front is ahead of the water saturation
front [9, 16]. This assumption is valid for most practical cases in single-layer
formations [10]. Nonetheless, in multilayer reservoirs, layer flow-rates at the

Figure 1.2: General pressure behavior during an injectivity test
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Chapter 1. Introduction 15

wellbore may change in time [14, 16]. Thus, in a strict sense, the Thompson
and Reynolds’ [15] steady-state theory is not applicable for multilayer systems,
as the rate transient at the wellbore implies that flow-rate within the flooded
region is not necessarily constant.

Therefore, this work has two main goals: first, a formulation for injec-
tion/falloff tests in multilayer reservoirs with multilateral horizontal wells is
proposed. This model, which is presented in Chapter 2, is based on the ex-
isting single-layer solutions [10, 11, 17]. Next, in Chapter 3, Green’s functions
are employed to develop an alternative formulation for injectivity tests in mul-
tilayer reservoirs with vertical wells. An application of Green’s functions to
obtain the pressure response in single-layer reservoirs with horizontal wells is
also presented. Finally, Chapter 4 contains the main conclusions of this work.
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2
Analytical Solution for Injectivity and Falloff Tests in Strati-
fied Reservoirs with Multilateral Horizontal Wells

This Chapter introduces the proposed model for injection/falloff tests
in multilayer reservoirs with multilateral horizontal wells. The formulation
is based on the solutions for single-layer reservoirs developed by Peres and
Reynolds [10] and Peres et al. [11].

This Chapter is organized as follows: Section 2.1 presents the motivation
to obtain a model for injection/falloff tests in multilayer reservoirs with
multilateral wells. An overview about previous works regarding analytical
solutions for horizontal wells is given in Section 2.2. Section 2.3 details the
proposed analytical solutions. The results and discussion are presented in
Section 2.4. Lastly, the main conclusions of this Chapter are reported in Section
2.5.

2.1
Introduction

Injectivity tests may be performed either in vertical or horizontal wells.
Horizontal wells present some advantages compared to vertical wells, such as
reduced fluid coning and better performance in reservoirs with high vertical
permeability [18]. Moreover, horizontal wells also enable drilling operations
underneath a permanent structure (an airport or ecologically sensitive areas,
for instance) and a single horizontal wellbore can replace several vertical wells
[19].

The solutions for single-phase [3, 5, 20] and two-phase flow [8, 11, 12, 16]
in multilayer reservoirs with vertical wells are already known. Formulations for
well testing in single-layer reservoirs with horizontal wells are also available
[4, 18, 21, 22, 23, 24, 25, 26]. Moreover, analytical models for drawdown
and buildup considering multilateral horizontal wells in single-layer [27, 28]
and multilayer formations [29, 30, 31] were developed. However, the currently
available solutions for injectivity and falloff tests with horizontal wells are
limited to single-layer reservoirs with single-lateral wells [10, 11]. Section 2.2
provides a more detailed literature review regarding analytical models for
horizontal wells.
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Chapter 2. Analytical Solution for Injectivity and Falloff Tests in Stratified
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This Chapter presents the extension of the analytical solutions developed
by Peres and Reynolds [10] and Peres et al. [11] for injectivity tests in
single-layer reservoirs so that they can be applied in multilayer reservoirs
with multilateral horizontal wellbores. It should be noted that models for
predicting pressure transient responses during the injection and falloff periods
in multilayer reservoirs with a vertical well have already been developed
[12, 16, 32].

In this Chapter, a new model is proposed for predicting pressure tran-
sient responses during injection and falloff tests for multilateral horizontal
wells completed in multilayer commingled systems. The proposed solutions
were validated via comparison with a general purpose finite difference-based
commercial flow simulator. Besides, approximations for early- and late-time
pressure derivative are provided. These approximations for pressure derivative
can be used to estimate the reservoir equivalent permeability. These solutions
could be useful for interpreting and analyzing injectivity pressure data sets by
nonlinear regression and designing such tests.

2.2
Previous Achievements

This Section reviews the works that provided relevant improvements in
understanding flow through horizontal wellbores. As disclosed by this literature
review, the currently available models are unable to describe injectivity tests
in multilayer systems.

2.2.1
Formulations for Single-Phase Flow in Single-Lateral Wells

The first analytical models for single-phase flow through horizontal
wellbores were presented in the late 80’s. Goode and Thambynayagam [4]
presented an analytical solution for pressure behavior through horizontal wells
by applying successive Laplace and Fourier transforms. They also proposed
approximate expressions for each observed flow regime. Their formulation uses
the superposition principle to compute buildup pressure.

Daviau et al. [21] proposed a solution for single-layer reservoirs based on
Green’s functions and the sources/sinks method. Their formulation assumes a
uniform flux wellbore condition, that is, flux along the wellbore is constant.
They also made brief comments regarding the different flow regimes observed
and the influence of wellbore hydraulics and positioning on pressure response.

Following their work, Ozkan et al. [18] provided further insights over the
existence of two distinct radial flow regimes that may be detected at well
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testing with horizontal wells. Anisotropy was included and they suggested
a technique to estimate the reservoir permeability and skin factor from the
pressure derivative with respect to the natural logarithm of time (hereafter
referred to as pressure derivative). Besides, it was stated that the pressure
response at a wellbore with infinite conductivity may be estimated by the
equivalent pressure point of an analytical model that assumes uniform flux.

An analytical model for the infinite conductivity wellbore was developed
by Rosa and Carvalho [33]. Their hypothesis considers that pressure (rather
than fluid influx) in the wellbore interior is uniform. To solve the problem,
they proposed that the well may be divided into n segments, each of them
presenting uniform influx. Pressure equality in all segments, combined with
the constant total producing flow-rate, yields a linear system that allows the
determination of flow-rate in each segment.

Abbaszadeh and Hegeman [34] presented a more general solution for
slanted wells in reservoirs with a pressure support system. Their formulation
accounts for no-flow vertical boundaries, constant pressure vertical boundaries
and mixed boundaries. The wellbore is described as a source strip, and pressure
change is obtained using Green’s functions. Moreover, vertical and horizontal
wells may be understood as limiting cases of their solution, by setting the
wellbore inclination angle as 0o and 90o, respectively. They applied the average
pressure technique to obtain the pressure response from an infinite conductivity
well.

Approximations for each flow period and the required conditions for them
to develop were summarized by Odeh and Babu [6], as well as estimates for
their starting and ending times. Once again, buildup pressure is computed
through the superposition principle.

The solution for horizontal wells in Laplace domain was presented by
Kuchuk et al. [22]. Their model is flexible when it comes to the reservoir vertical
boundary condition, since it is applicable in cases with constant pressure
maintenance systems, such as gas caps, acting at one of the reservoir vertical
boundaries.

Jelmert and Thompson [35] proposed that the linear system associated
with the infinite conductivity condition is easier to compute in Laplace domain
than in the real field. They studied the influence of assuming a piecewise
linear flow-rate distribution, when compared to a stepwise constant flow-rate
distribution, as suggested by Rosa and Carvalho [33]. Their results supported
that it is possible to apply the equivalent pressure point of an uniform influx
model to compute the pressure response of an infinite conductivity well.

Spivey and Lee [36] presented a model for wells at an arbitrary azimuth
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in anisotropic formations. Horizontal wells are represented in their model as
limiting cases where the deviation angle is zero. The proposed formulation
consists of transforming the anisotropic system into an equivalent isotropic
reservoir. The model is also applicable at hydraulically fractured wells.

A generalized solution for slanted wells was reached by Zhan and Zlotnik
[19]. Their solution consists of dividing the wellbore into several sink points.
Then, the solution for those points is determined in Laplace domain. Horizontal
and vertical wells may be expressed as particular cases of their formulation.

Nie et al. [24] provided an analytical model for single-phase flow in radi-
ally composite single-layer reservoirs with horizontal wells. Their formulation
is flexible when it comes to the reservoir boundary conditions: vertical bound-
aries may be closed or at constant pressure, as well as the lateral boundaries.
Type curves were developed considering this composite reservoir scheme. They
also showed how pressure derivative gets progressively influenced by the radial
zones further from the wellbore as time goes on.

Both the infinite conductivity model and the uniform flux assumption fail
to adequately represent the pressure drop inside the wellbore. This pressure
change must occur so that fluid moves the well toe to the heel (or from heel
to toe, in the case of fluid injection). Hence, a more thorough model should
account for frictional, fluid acceleration and directional flow effects. In slanted
wells, gravitational effects should also be considered. Chen et al. [25] presented
a finite conductivity solution by including the first and second factors above
mentioned, considering a multiple-fractured horizontal well. Their results show
that the relevance of wellbore hydraulics on pressure change increases until a
peak and then declines.

Wang and Zhan [26] have also evaluated the influence of wellbore
hydraulics into the pressure response. They compared the equipotential curves
in a given reservoir assuming three distinct wellbore conditions: uniform influx,
infinite conductivity and mixed inner boundary condition, which describes the
wellbore hydraulics in a more realistic way. They showed that, even though
pressure change behaves as a linear function of flow-rate for both uniform
influx and infinite conductivity, the same does not hold for a mixed boundary
condition.

A formulation in Laplace domain for a single-lateral well in a multilayer
reservoir with crossflow was developed by Kuchuk and Habashy [23]. Their
solution assumes that the wellbore perforates only one layer and, as the test
goes on, pressure behavior gets progressively influenced by the other layers,
due to formation crossflow. In stratified reservoirs, their solution yields the
same pressure behavior that would be obtained from a single-layer reservoir,
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since they considered a single-lateral well.

2.2.2
Formulations for Single-Phase Flow in Multilateral Wells

In reservoirs where areal anisotropy is significant (that is, permeabilities
in x- and y-directions are remarkably different), productivity of a single lateral
horizontal well is influenced by the wellbore drilling direction. Since the main
permeability direction is usually unknown a priori, this issue may be mitigated
by the use of multilateral wells [28, 30, 31].

Vo and Madden [29] stated that the algorithm developed by Spath et
al. [37] for pressure change in commingled reservoirs with vertical wells is
also applicable to the multilateral horizontal well problem. For vertical wells,
the algorithm consists of adding the Laplace domain solutions for individual
layers. Vo and Madden [29] built a similar procedure for multibranched wells,
and presented field example applications. Pressure behavior in each branch is
determined using the single-lateral Laplace solution presented by Kuchuk et al.
[22]. This method can also determine pressure behavior in multilayer systems,
provided that each layer is perforated by at least one wellbore ramification.

An analytical solution for multibranched horizontal wells was proposed
by Larsen [30]. This solution, which was also reached using Laplace transform,
approximates each wellbore ramification by a uniform influx fracture and is
applicable in multilayer reservoirs, with or without formation crossflow.

Using Fourier and Laplace transforms, Yildiz [27] reached a solution in
Laplace domain for multilateral wells in single-layer reservoirs. Unlike the for-
mulation proposed by Larsen [30], Yildiz [27] represented each lateral not as a
fracture, but using the more realistic approach of infinite conductivity instead.
Yildiz [27] discussed the effects of total wellbore length, areal anisotropy and
uneven skin factor distribution. In a subsequent work, Yildiz [28] analyzed how
other factors such as branches configuration affects well productivity.

Pan et al. [31] developed a real space solution for multilateral wells,
based on the solution achieved by Daviau et al. [21] and Ozkan et al.
[18]. The formulation consists of applying the solution for each individual
branch and then using a suitable wellbore condition (uniform influx or infinite
conductivity) to couple the equations for all laterals. Their work presented a
comparison between several wellbore configurations and discussed the effects
of areal anisotropy on well productivity. Although Pan et al. [31] stated that
their formulation applies to multilayer reservoirs (and even showed a field case
example), no validation was presented for the multilayer case.

DBD
PUC-Rio - Certificação Digital Nº 1812638/CA



Chapter 2. Analytical Solution for Injectivity and Falloff Tests in Stratified
Reservoirs with Multilateral Horizontal Wells 21

2.2.3
Formulations for Injectivity Tests in Horizontal Wells

Only a few papers regarding injectivity tests in horizontal wells have
been published. Numerical studies have assessed the efficiency of water flooding
projects, where the reservoir is drilled by injector and producer horizontal wells
[38, 39]. When it comes to analytical models, the existing solutions can only
describe pressure behavior in single-layer reservoirs.

Peres and Reynolds [10] developed a formulation that describes the
pressure response during the injection period in single-layer reservoirs. They
proposed that the mobility differences between the fluids may be condensed
into a term that adjusts the expected single-phase flow pressure change.
This additional term is computed after the flood front in each direction has
been determined. Their results also showed that pressure response from fluid
injection through a horizontal wellbore without formation damage might be
estimated by the single-phase solution, unlike what happens in vertical wells.

Boughara and Reynolds [17] developed a formulation for injectivity tests
that accounts for non-isothermal effects. Their solution considers that the in-
jected water is at a different temperature than the reservoir and the tempera-
ture profile may be approximated by a Heaviside function. Temperature front
is determined from the thermal balance and the flood front is computed using
non-isothermal Buckley-Leverett [40] theory. Solutions for both vertical and
horizontal wells in single-layer reservoirs are presented.

The falloff solution in single-layer reservoirs was reached by Peres et al.
[11], applying the rate superposition principle to depict flow-rate history after
the well is shut in. Both injection and falloff solutions assume uniform flux
along the well.

To the best of the author’s knowledge, the formulations achieved by
Vo and Madden [29], Larsen [30] and Pan et al. [31] are the only solutions
for single-phase flow in multilayer systems with horizontal wells, and there is
currently no analytical solution available for the pressure behavior in multilayer
reservoirs under two-phase flow through multibranched horizontal wells. Hence,
the main purpose of this Chapter is to develop new analytical solutions for
analyzing injection/falloff tests under two-phase oil-water flow conditions in
stratified reservoirs with multilateral horizontal wells. The proposed solutions
extend the already known analytical formulations for injection/falloff tests in
single-layer formations [10, 11] combined with the model proposed by Pan
et al. [31] for single-phase flow in multibranched wells, considering a slightly
compressible fluid with constant viscosity and compressibility.
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2.3
Injectivity Tests with Multilateral Horizontal Wells

A reservoir with an arbitrary number of layers was considered. Each
layer may present distinct properties from one another. It was assumed no
crossflow between layers. Therefore, pressure behavior will be influenced by
all layers only if the wellbore presents one ramification per layer. A schematic
of the model considered in this study is shown in Fig. 2.1. All computations
assume that a consistent set of units is used and that the following simplifying
hypotheses are valid:

– Reservoir initially in equilibrium;

– Homogeneous, laterally infinite reservoir, with impermeable vertical
boundaries;

– Multilayer reservoir without crossflow, that is, the vertical section of the
wellbore is the only flow path between layers;

– Apart from the hydrostatic column, pressure is initially the same in all
layers;

– Each wellbore branch is parallel to the horizontal plane, located at an
arbitrary distance from the formation bottom

– Wellbore injects at a constant flow-rate of qinj (flow-rate in each individ-
ual horizontal branch, on the other hand, may change in time)

– Infinite conductivity: pressure is uniform along each wellbore branch;

Figure 2.1: Multilayer reservoir model with a multilateral horizontal wellbore
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– Fluids are slightly compressible, having constant viscosity and isothermal
compressibility;

– Isothermal flow of oil and water;

– Gravitational, capillary and wellbore storage effects are neglected;

The solutions for two-phase flow through horizontal wells in single-
layer formations were presented by Peres and Reynolds [10] and Peres et al.
[11]. In this Section, their solutions will be introduced and, then, extended
to multilayer stratified reservoirs. The main insight is to split the bottom
hole pressure in two terms: one that encompasses the single-phase oil flow
and another that derives from the mobility contrast between oil and water
[12, 16, 32].

2.3.1
Injectivity Tests in Single-Layer Reservoirs

As proposed by Peres and Reynolds [10], pressure change at the wellbore
(∆pwf ) during injectivity tests in a single-layer reservoir is computed as:

∆pwf (t) = ∆po(t) + qinj

λ̂oh


πh

kxL

β∫
πh
8

 λ̂o
λt(x, t)

− 1
 dx

h(x)+

1
kxy

max(L2 ,rFxy)∫
L/2

 λ̂o
λt(r, t)

− 1
 dr

r
+

+ h

kzxL

( kzx
kskin

− 1
) min(rskin,rFzx)∫

rw

 λ̂o
λt(r, t)

− 1
 dr

r
+

min(dz,rFzx)∫
rw

 λ̂o
λt(r, t)

− 1
 dr

r


 ,

(2-1)

where λ̂o and λt denote, respectively, the endpoint oil mobility and total
mobility (which represent the relative easiness from a given fluid to flow
throughout the porous media); kx, kzx =

√
kzkx and kxy =

√
kxky are,

respectively, the permeabilities in the x-direction, in the zx- and xy-planes
(the permeability indicates the area within the porous media that is available
for fluid to flow); qinj is the injection flow-rate; h is the reservoir thickness; L is
the wellbore length; rw is the wellbore radius; kskin and rskin are, respectively,
the skin zone permeability and radius (the skin zone consists of a region
concentric with the wellbore where permeability is changed due to wellbore
perforation and completion); dz is the smallest distance between the reservoir
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and a vertical boundary; rFzx and rFxy represent the flood front radii in the
zx- and xy-planes, respectively.

The ∆po(t) term is determined as depicted in Appendix A.1, and it
represents the pressure change that would be obtained if the injected fluid
presented the same properties as the reservoir underlying oil. The terms
between braces in Eq. (2-1) represent the mobility contrast in the x-direction,
the xy-plane, inside the damaged region and in the zx-plane, respectively.
Therefore, they may be understood as correction terms that are required due
to the differences between water and oil. Integration limits in Eq. (2-1) come
from the flooding patterns proposed by Deppe [41]. The first integral upper
limit is defined as:

β = min
[
max

(
πh

8 , xF (t)
)
,
πL

8

]
, (2-2)

where xF (t) indicates the flood front propagation in the x-direction at a given
time t. The flood fronts in each plane are determined as depicted by Buckley
and Leverett [40], using the proper equations for each geometry [10]. Hence,
the water front radius in the zx-plane is given by:

rFzx(t) =
√
r2
w + qinjt

πφL
f ′w(Sw), (2-3)

where φ is the reservoir porosity (which represents the fraction of porous media
that is not filled by rock) and f ′w is the fractional flow derivative, which is a
function of water saturation Sw.

In the x-direction, the flood front is computed as:

xF (t) = qinjt

2πφLhf
′
w(Sw). (2-4)

Finally, in the xy-plane:

rFxy(t) =
√
qinjt

πφh
f ′w(Sw). (2-5)

Flood front propagation in each direction should be determined from Eqs.
(2-3) to (2-5) at all times. However, as the flood front develops, the integrals
in Eq. (2-1) become less or more significant, since the integral limits change
in time [10, 41]. Therefore, the flood front propagation in the x-direction only
starts to influence the pressure change after xF (t) > πh/8. On the other hand,
the second integral term of Eq. (2-1) will be numerically equal to zero while
rFxy(t) ≤ L/2. One should also notice that no restriction was made regarding
the fractional flow derivative. This means that water saturation may vary inside
the swept region, and the saturation profile will fundamentally depend on the
relative permeability curves.
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Figure 2.2: Linear flood front propagation from a non centered horizontal well

Eq. (2-1) is derived under the assumption that flow-rate is constant
within the flooded region. Peres and Reynolds [10] stated the criteria required
for this hypothesis to hold and showed that, in most practical conditions, the
flood front is indeed within the steady-state region.

For non-centered wells, the effective flooded thickness varies in the x-
direction. That is the reason why thickness is expressed as a function of x
in the first integral of Eq. (2-1). Fig. 2.2 displays the flood front propagation
model that was considered in this work, which was suggested by Peres et al.
[11]. For values of x such that πh

8 ≤ x ≤ xaux, the effective flooded zone
thickness is estimated by a linear interpolation between the reservoir thickness
and the smallest distance between the well and a vertical boundary dz. The
coordinate xaux is defined as [11]:

xaux =
π2

8( h
2dz−1) ln

(
h

2dz

)
+ ln

(
h

2πdz sin(πdz/h)

)
π
h

[
h

2dz
h

2dz−1 ln
(

h
2dz

)
− 1

] . (2-6)

2.3.2
Injectivity Tests in Multilayer Reservoirs

The first contribution of this Chapter is to extend the analytical model
presented in Section 2.3.1 for commingled reservoirs. The multilayer formula-
tion begins by applying Eq. (2-1) at a given layer j:
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∆pwfj(t) = ∆poj(t) + qj

λ̂ojhj


πhj
kxjLj

βj∫
πhj

8

 λ̂oj
λtj
− 1

 dx

hj(x)+

1
kxyj

max
(
Lj
2 ,rFxyj

)
∫

Lj/2

 λ̂oj
λtj
− 1

 dr

r
+

+ hj
kzxjLj


(
kzxj
kskinj

− 1
) min(rskinj ,rFzxj)∫

rw

 λ̂oj
λtj
− 1

 dr

r
+

min(dz,rFzxj)∫
rw

 λ̂oj
λtj
− 1

 dr

r


 .

(2-7)

In Eq. (2-7), the ∆poj(t) term represents the pressure change due to
single-phase oil flow. Considering a stratified reservoir is critical to the devel-
opment of the proposed formulation. If there were formation crossflow, once
the flood front at a given layer had reached a vertical boundary, it would pos-
sibly invade adjacent layers. Flood front propagation, then, would be much
more complicate to foresee. Since formation crossflow was not accounted for,
flood front in each layer may be computed independently and analogously to
the single-layer model.

It is important to notice, though, that flow-rate in each wellbore lateral
(and, hence, in each layer) may change in time [27, 31]. Thus, the flow-rate-
elapsed time product in Eqs. (2-3) to (2-5) should be replaced by the time
integral of flow-rate. Hence, the water front in the zx-plane in layer j is
computed as:

rFzxj(t) =

√√√√√√r2
w +

t∫
0
qj(τ)dτ

πφLj
f ′wj(Sw). (2-8)

The flood front in the x-direction in layer j is determined as:

xFj(t) =

t∫
0
qj(τ)dτ

2πφLjhj
f ′wj(Sw). (2-9)

In the xy-plane, flood front is evaluated as :

rFxyj(t) =

√√√√√√
t∫

0
qj(τ)dτ

πφhj
f ′wj(Sw). (2-10)

Eqs (2-8) to (2-10) evidence that the water front propagation depends
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on the fractional flow derivative. Thus, the flood front shape is intrinsically
related to the fractional flow derivative curve which, in its turn, is obtained
from the relative permeability data. Thereby, water saturation inside the swept
region is not constant, and depends on the relative permeability curves.

Inspired by the analytical solution for vertical wells presented by Barreto
et al. [16], a weighting variable Aj(t) is now introduced:

Aj(t) = 1
λ̂ojhj


πhj
kxjLj

βj∫
πhj

8

 λ̂oj
λtj(x, t)

− 1
 dx

hj(x)+

1
kxyj

max
(
Lj
2 ,rFxyj

)
∫

Lj/2

 λ̂oj
λtj(r, t)

− 1
 dr

r
+

+ hj
kzxjLj


(
kzxj
kskinj

− 1
) min(rskinj ,rFzxj)∫

rw

 λ̂oj
λtj(r, t)

− 1
 dr

r
+

min(dz,rFzxj)∫
rw

 λ̂oj
λtj(r, t)

− 1
 dr

r


 .

(2-11)

The weighting variable Aj(t) groups the three integral terms that repre-
sent the flood front propagation in Eq. (2-7) into a single coefficient, simplifying
the notation on subsequent computations. Replacing Eq. (2-11) in Eq. (2-7):

∆pwfj(t) = ∆poj(t) + qjAj(t). (2-12)
As demonstrated in Appendix A.2, for an infinite conductivity wellbore,

the ∆poj(t) term associated with the single-phase oil displacement is, in fact,
the same for all layers [31]:

∆po1(t) = ∆po2(t) = · · · = ∆pon(t) = ∆po(t), ∀j = 1, . . . , n. (2-13)

For this reason, it will be hereafter denoted simply as ∆po(t). Besides,
the considered model states that pressure change is also equal in all layers,
except for the hydrostatic column:

∆pwf1(t) = ∆pwf2(t) = · · · = ∆pwfn(t) = ∆pwf (t), ∀j = 1, . . . , n.
(2-14)

Thus, rearranging Eq. (2-12), layer flow-rate may be computed as:
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qj = ∆pwf (t)−∆po(t)
Aj(t)

. (2-15)

Summing up all layer flow-rates:

qinj =
n∑
j=1

qj = (∆pwf (t)−∆po(t))
n∑
j=1

1
Aj(t)

. (2-16)

Rearranging Eq. (2-16):

∆pwf (t) = ∆po(t) + qinj
n∑
j=1

A−1
j (t)

. (2-17)

Eq. (2-17) depicts the pressure behavior in multilayer systems under
water injection. In single-layer reservoirs, it yields the same result as equation
(2-1), which assures that the suggested formulation is applicable to reservoirs
with any number of layers. Furthermore, Eq. (2-17) is analogous to the
formulation for injectivity tests in multilayer reservoirs with vertical wellbores
[16]. The definition of Aj(t) and the computation of ∆po(t), however, differ
from the corresponding ones proposed by Barreto et al. [16], since a multilateral
horizontal well is considered in this work.

A computational implementation of the solution derived in this Section
may be obtained from the following algorithm:

– For each time step:

1. Build the linear system given by Eq. (A-8),

2. Determine layer flow-rates at the current time step by solving the
linear system

3. Compute ∆po(t) using Eq. (A-7)

4. For each layer, compute the flood front in each direction using the
theory from Buckley and Leverett [40]

5. For all layers, compute the Aj(t) coefficients as defined in Eq. (2-11)

6. Compute ∆pwf (t) using Eq. (2-17)

– Repeat steps 1 to 6 for the next time step
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2.3.3
Formulation for Falloff Tests

Peres et al. [11] developed the solution for falloff tests in single-layer
reservoirs with horizontal wells. They demonstrated that the flow-rate profile
along the flooded zone directly influences pressure change during falloff (de-
noted as ∆pws). Considering that the well is shut in at t = tp, the pressure
change after a certain shut-in time ∆t = t− tp may be computed as:

∆pws(∆t) = ∆pos(∆t) + 1
h


πh

kxL

β∫
πh
8

(
qs
λt
− q̂os

λ̂o

)
dx

h(x)+

1
kxy

max(L2 ,rFxy)∫
L/2

(
qs
λt
− q̂os

λ̂o

)
dr

r
+

h

kzxL

( kzx
kskin

− 1
) min(rskin,rFzx)∫

rw

(
qs
λt
− q̂os

λ̂o

)
dr

r
+

min(dz,rFzx)∫
rw

(
qs
λt
− q̂os

λ̂o

)
dr

r


 .

(2-18)

In Eq. (2-18), the subscript s denotes the falloff period, whereas q̂os and
qs denote, respectively, oil flow-rate and total flow-rate, which is the sum of
oil and water flow-rates. Again, the ∆pos(∆t) term refers to the single-phase
contribution and should be evaluated as detailed in Appendix A.1.

After the well is shut in, a zero-rate pulse propagates throughout the
reservoir [12]. Therefore, flow-rate inside the flooded region becomes a function
of position and shut-in time [11]. Thus, it must be written under the integral
sign. In Eq. (2-18), the flood fronts are assumed to remain constant [42, 43].
Hence, the integral limits in Eq. (2-18) also remain constant. Therefore, the
first and second integral terms of Eq. (2-18) may be numerically equal to zero
if the well is shut-in before the water front reaches a vertical boundary; that
is, if shut-in time tp is short enough so that the water front propagation is still
at the "first radial" regime at the moment of shut-in [17].

During falloff, oil flow-rate (q̂os) considering radial flow may be estimated
from the logarithmic approximation of the line-source solution [11]:

q̂os(r,∆t) = qinj

[
exp

(
− φctr

2

4kλ̂o(tp + ∆t)

)
− exp

(
− φctr

2

4kλ̂o(∆t)

)]
. (2-19)

DBD
PUC-Rio - Certificação Digital Nº 1812638/CA



Chapter 2. Analytical Solution for Injectivity and Falloff Tests in Stratified
Reservoirs with Multilateral Horizontal Wells 30

where ct stands for total compressibility. For linear flow, oil flow-rate may be
determined as [11]:

q̂os(x,∆t) = qinj

erfc
x

2

√√√√ φct

4kλ̂o(tp + ∆t)

− erfc
x

2

√√√√ φct

4kλ̂o(∆t)

 . (2-20)

Total flow-rate (qs) is computed by replacing the endpoint oil mobility
by total mobility at the considered position in Eqs. (2-19) and (2-20).

Another goal of this Chapter is to extend the falloff solution given by Eq.
(2-18) to commingled reservoirs. For multilayer formations, the application of
Eq. (2-18) at a given layer j yields:

∆pwsj(∆t) = ∆posj(∆t) + 1
hj


πhj
kxjLj

βj∫
πhj

8

(
qsj
λt
− q̂osj

λ̂o

)
dx

hj(x)+

1
kxyj

max
(
Lj
2 ,rFxyj

)
∫

Lj/2

(
qsj
λt
− q̂osj

λ̂o

)
dr

r
+

hj
kzxjLj


(
kzxj
kskinj

− 1
) min(rskinj ,rFzxj)∫

rw

(
qsj
λt
− q̂osj

λ̂o

)
dr

r
+

min(dzj ,rFzxj)∫
rw

(
qsj
λt
− q̂osj

λ̂o

)
dr

r


 .

(2-21)

To obtain the formulation for pressure behavior, it will be assumed that
the zero-rate pulse equally propagates in all layers, even though layer properties
might be different. The same strong assumption was made by Bela et al. [12] to
develop the solution for falloff tests in stratified reservoirs with vertical wells.
Although this hypothesis is essential to the development of the falloff solution,
it might not be realistic at early times in reservoirs where layer properties
are remarkably different [5, 44]. The consequence of this assumption on the
solution will be discussed in Section 2.4. Thereby, under this hypothesis, total
and oil flow-rates in layer j may be respectively expressed in terms of layer
flow-rate fraction (qDpj) as:

qsj(r,∆t) = qDpjqs(r,∆t), (2-22)
and

q̂osj(r,∆t) = qDpj q̂os(r,∆t), (2-23)
where qs and q̂os stand for the sum total and oil flow-rates in all layers.
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Those flow-rates are estimated from Eqs. (2-19) and (2-20), using the reservoir
equivalent properties [12].

Moreover, introducing a weighting variable Rj(∆t) defined as:

Rj(∆t) = 1
hj


πhj
kxjLj

βj∫
πhj

8

(
qs
λt
− q̂os

λ̂o

)
dx

hj(x)+

1
kxyj

max
(
Lj
2 ,rFxyj

)
∫

Lj/2

(
qs
λt
− q̂os

λ̂o

)
dr

r
+

hj
kzxjLj


(
kzxj
kskinj

− 1
) min(rskinj ,rFzxj)∫

rw

(
qs
λt
− q̂os

λ̂o

)
dr

r
+

min(dzj ,rFzxj)∫
rw

(
qs
λt
− q̂os

λ̂o

)
dr

r


 .

(2-24)

Analogously to injection period formulation, the weighting variable
Rj(∆t) defined in Eq. (2-24) aims to encompass the three integral terms of
Eq. (2-21) into a single coefficient to simplify the notation. Then, layer flow-
rate fraction may be written out of the integral sign and Eq. (2-21) may be
expressed as:

∆pwsj(∆t) = ∆posj(∆t) + qDpjRj(∆t). (2-25)
The hypothesis that the zero-rate pulse equally propagates in all layers

was required to derive Eq. (2-25) using the Rj(∆t) coefficient defined in Eq.
(2-24) and layer flow-rate fraction qDpj. Pressure change related to the single-
phase oil contribution (that is, the ∆posj(∆t) term), however, was not affected
by this assumption. Therefore, Eq. (2-25) requires that layer flow-rate fractions
remain constant inside the flooded region only.

Once again, wellbore pressure change in all layers is assumed to be the
same by model hypothesis. Moreover, the term associated with single-phase
oil flow (∆posj(∆t)) is also the same in all layers. Thereby, flow-rate fraction
in layer j may be computed as:

qDpj = ∆pws(∆t)−∆pos(∆t)
Rj(∆t)

. (2-26)

By definition, the sum of all layer flow-rate fractions must be equal to
one. Thus:
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1 =
n∑
j=1

qDpj = (∆pws(∆t)−∆pos(∆t))
n∑
j=1

1
Rj(∆t)

. (2-27)

Rearranging Eq. (2-27):

∆pws(∆t) = ∆pos(∆t) + 1
n∑
j=1

R−1
j (∆t)

. (2-28)

Thus, wellbore pressure during falloff tests in multilayer reservoirs with
multilateral horizontal wells may be evaluated from Eq. (2-28). Similar to the
formulation for the injection period, this solution is analogous to the model for
vertical wells [12], provided that ∆pos(∆t) is determined using the formulation
developed by Pan et al. [31] for multilateral horizontal wells and the Rj(∆t)
coefficients are computed according to Eq. (2-24).

The computational implementation of the solution presented in this
Section should proceed according to the following algorithm:

– For each layer, store the flood front profile at the moment of shut-in
(t = tp)

– For each time step:

1. Compute ∆pos(∆t) using Eq. (A-7) and the superposition principle

2. For all layers, compute the Rj(∆t) coefficients as defined in Eq.
(2-24)

3. Compute ∆pws(∆t) using Eq. (2-28)

– Repeat steps 1 to 3 for the next time step

2.3.4
Pressure Derivative Behavior

This Section presents theoretical pressure derivative responses for differ-
ent flow regimes that may be observed during injectivity/falloff tests in mul-
tilayer reservoirs with multilateral horizontal wells. Peres and Reynolds [10]
showed that two-phase flow in reservoirs with horizontal wells might present
several distinct flow regimes, which depend not only on the pressure transient
zone but also on the flooded region.

They denoted the first regime as "first radial - first radial", since both
the pressure transient pulse and the flood front are propagating in the
vertical plane perpendicular to the wellbore. During this flow regime, pressure
derivative reflects oil properties, and behaves similar to the early radial regime
observed at a single-phase flow. Therefore, pressure derivative during this flow
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regime attains a constant level that is related to the equivalent properties in
the vertical plane:

∂∆pwf
∂ ln(t) ≈

1
2

qinj

Lt(kzx)eqλ̂o
, (2-29)

where Lt stands for the wellbore total effective length and (kzx)eq is the
equivalent permeability in the zx-plane, which is defined as:

(kzx)eq =

n∑
j=1

kzxjLj

Lt
. (2-30)

As the injection goes on, the flood front propagates. In reservoirs with
formation damage, eventually the flood front overcomes the skin zone radius,
yielding a characteristic shift in pressure derivative [32]. During this blunt shift,
pressure derivative may even attain negative values [10].

After the early radial flow, a linear regime develops in each layer.
However, the linear flow might start and end at different times in each layer.
Therefore, it is not possible to state a priori that the characteristic derivative
signature related to this flow regime will be identified.

The linear regime is followed by a late radial flow. Since the reservoir is
assumed to be laterally infinite, eventually pressure diffusion will simultane-
ously propagate through the horizontal plane in all layers. Pressure derivative
during this late radial flow period will depend on the flood front radius in each
layer. Using the same notation from Peres and Reynolds [10], either a "second
radial - first radial" or a "second radial - first linear" or a "second radial - second
radial" flow regime may be observed. Assuming that the "second radial - first
radial" flow develops in all layers, pressure derivative is approximated by:

∂∆pwf
∂ ln(t) ≈

1
2

qinj

ht(kxy)eqλ̂o

(
1 + ht

Lt

(1− M̂)
M̂

)
, (2-31)

where ht stands for the reservoir total thickness and (kzx)eq is the equivalent
permeability in the xy-plane, which is defined as:

(kxy)eq =

n∑
j=1

kxyjhj

ht
. (2-32)

where M̂ stands for the endpoint mobility ratio, defined as M̂ = λ̂w/λ̂o, and λ̂w
represents the endpoint water mobility. The expression for pressure derivative
while the "second radial - second radial" regime occurs in all layers is given by:

∂∆pwf
∂ ln(t) ≈

1
2

qinj

ht(kxy)eqλ̂o

(
1 + ht

2LtM̂
(1− M̂)
M̂

)
. (2-33)

Approximations for the other flow regimes may be obtained by adapting
the generalized expression for pressure derivative in single-layer reservoirs
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achieved by Peres and Reynolds [10].
Pressure derivative during falloff should be taken with respect to the

equivalent time te = tp∆t
tp+∆t [11, 12, 17]. During early falloff times, pressure

change is mostly influenced by properties in the vertical plane perpendicular
to the wellbore. At very early times, one might expect that pressure derivative
attains a constant level associated with endpoint water properties. Thus:

∂∆pws
∂ ln(te)

≈ 1
2

qinj

Lt(kzx)eqλ̂w
. (2-34)

Based on the formulation for buildup analysis from conventional well
testing [6], Eq. (2-34) is expected to be valid only if the wellbore is shut-
in while the early radial flow is still occurring. Moreover, as stated by Peres
et al. [11], early-time pressure derivative reflects the total mobility inside the
damaged region. Therefore, pressure derivative level does not necessarily match
neither the single-phase oil level nor the single-phase water level. Besides, it
is important to notice that assuming the zero transient rate diffusion equally
propagates in all layers may lead to errors at early falloff times [12].

It is important to notice that, since flood front is assumed to remain
stationary during falloff, skin effects only influence pressure change at the
wellbore while flow-rate inside the damaged zone is non-zero. Therefore, the
damaged zone presents a very limited effect on falloff pressure derivative. As a
result, the characteristic blunt derivative shift that occurs during injection is
not observed during falloff.

As flow throughout the reservoir ends, pressure derivative gradually
becomes closer to the single-phase oil solution [11, 12, 17]. Thus, at late falloff
times, pressure behavior is given by:

∂∆pws
∂ ln(te)

≈ 1
2

qinj

ht(kxy)eqλ̂o
. (2-35)

Eq. (2-35) represents the same level obtained from the single-phase oil
solution [4, 18].

2.3.5
Discussion on the Main Assumptions

The developed solutions for injectivity and falloff tests in multilayer reser-
voirs were achieved considering some simplifying hypotheses, as enumerated
before. This Section briefly comments the most relevant assumptions and how
they affect the proposed model.

The reservoir was assumed to be composed of stratified layers. Despite the
fact that formation crossflow may be relevant in some reservoirs, at short times
the vertical flow between layers is negligible [5, 44]. Furthermore, accounting
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for crossflow effects increases the problem complexity. For this reason, the
single-phase models proposed by Vo and Madden [29] and Pan et al. [31] also
assume stratified reservoirs. Flood front computations are particularly more
complicated in reservoirs with crossflow, as water may flow from one layer to
another. Therefore, flood front in each layer would depend on adjacent layers as
well, and Eqs. (2-8) to (2-10) would be applicable only at early-times. Handling
the vertical water flow between layers is out of the scope of this work.

Including capillary effects would change the flood front as well, yielding
a smoother profile in regions further from the wellbore. However, mobility
profile in regions closer to the wellbore present a more meaningful influence
on pressure change, due to the 1/r and 1/h(x) terms that appear inside the
integrals defined in Eqs. (2-11) and (2-24). Thus, the capillary forces are not
expected to play a significant role in pressure change at the wellbore [11].

Gravitational forces were also neglected. Although a more rigorous
solution could be obtained by accounting for the gravitational effect, if the
reservoir thickness is not very large, the influence of gravity in pressure
response is significantly smaller than the pressure diffusion due to water
injection [25]. For this reason, analytical models for horizontal wells typically
neglect gravitational forces [4, 6, 10, 11, 18, 21, 24, 36].

As for the wellbore hydraulics, the solutions presented in this Chapter
assume infinite conductivity, which considers that pressure is uniform along the
horizontal branches, but fluid influx varies. This assumption is more realistic
than the uniform influx model, which accounts for a uniform fluid influx
along the well, while pressure distribution changes. However, a more accurate
description of wellbore hydraulics is obtained using a finite conductivity model
[22, 33], which assumes that both pressure and fluid inflow are not uniform.

Wang and Zhan [26] discussed the effects of frictional and kinetic losses
inside the wellbore. Chen et al. [25] showed that wellbore hydraulics may
also be relevant in fractured systems. Nonetheless, this Chapter is focused
on extending the solution for injectivity/falloff tests to multilayer systems
and discuss the main effects of water injection through horizontal wells. In
this sense, the infinite conductivity wellbore model consists of a simple but
yet adequate hypothesis, considering the objectives of this work. One should
also notice that the Aj(t) and Rj(∆t) as defined in Eqs. (2-11) and (2-24),
respectively, are related to the mobility differences inside the flooded zone,
rather than inside the wellbore. This means that they are not directly affected
by wellbore hydraulic effects. Hence, an improved model that accounts for
wellbore hydraulics effects may be achieved by using the analytical solutions
from Chen et al. [25] or Wang and Zhan [26] to evaluate ∆po(t) and ∆pos(∆t)
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in Eqs. (2-17) and (2-28), respectively.
Finally, neglecting wellbore storage is also a significantly strong assump-

tion. This assumption becomes particularly less accurate in cases where the
pressure gauge is placed far from the formation top. Still, many analytical
formulations for reservoirs with horizontal wells also neglect wellbore storage
effects for simplicity [6, 18, 33, 36]. Furthermore, this Chapter also aims to
evaluate some early time features that could be masked by wellbore storage
effects. For instance, the blunt derivative shift that occurs during injection in
reservoirs with formation damage, and the validity of the early-time derivative
approximations given by Eqs. (2-29) and (2-34). Previous models for two-phase
flow usually assume no wellbore storage so that the early time differences with
respect to single-phase flow can be properly analyzed [9, 10, 11, 12, 15, 16].
Therefore, neglecting wellbore storage, albeit unrealistic, allows the identifica-
tion of pressure derivative features that could otherwise be masked.

2.4
Model Validation

The accuracy of the solutions detailed in Section 2.3 was assessed by
comparison to a finite difference-based commercial flow simulator [45]. The
employed simulation grid consists of 101 x 101 blocks in the horizontal plane.
In the vertical direction, each layer is represented by 11 grid blocks. Blocks
containing the wellbore have dimensions 0.6 m in the x-direction, 5 m in the
y-direction (which is parallel to the wellbore axis) and 0.6 m in the z-direction.
Blocks are progressively coarser as the distance from the wellbore increases.
Reservoir grid was 7,000 m wide (x-direction) and 2,000 m long (y-direction).
A hybrid grid refinement of 3 (radial direction) by 1 (angular direction) by 4
(well axis direction) was employed at all grid blocks containing the wellbore.
A Cartesian refinement of 2 by 2 by 2 was also applied at their neighbors.

A 0.0762 m wellbore radius was employed. Values for oil and rock com-
pressibilities were 1.14·10−4 (kgf/cm2)-1 and 8.0·10−5 (kgf/cm2)-1, respectively.
It was considered that water viscosity is equal to 0.52 cP and a water compress-
ibility of 4.04·10−5 (kgf/cm2)-1. Other reservoir properties may be observed in
Table 2.1. Fig. 2.3 shows the relative permeability curves, which are assumed
to be the same in all layers. It is important to highlight that it was not re-
quired at any step of Section 2.3 that relative permeability data should be the
same in all layers. Nonetheless, in a field application it might be challenging
to individually determine relative permeability curves for each layer.

In Cases A and B, it was assumed that water is injected during a 96 h
period, followed by a 96 h-long shut-in period. Case C, in its turn, required a
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Case qinj µo φj
kxyj kzj ksj Sj

Lj dzj hj
(m3/d) (cP) (mD) (mD) (mD) (m) (m) (m)

A 1500 5.7 0.23 500 250 200 1.3 100 10 20
0.27 1450 725 200 7.1 120 5 15

B 2000 3.8
0.24 590 320 135 3.4 200 10 20
0.30 780 460 135 5.2 100 7.5 15
0.19 940 610 135 7.0 150 12.5 25

C 1500 1.1 0.23 500 250 150 2.9 100 10 20
0.27 1450 725 150 12.4 120 5 15

Table 2.1: Reservoir parameters

shorter injection period, to avoid the start of the boundary dominated flow-
regime in the numerical simulator. Thus, the shut in time tp was set as 24 h.
Falloff period also lasts 24 h.

It was considered that well drilling and completion change the permeabil-
ity around it, representing the skin effect. Gridblocks containing the wellbore
were built with 0.6 m width and 0.6 m height (that is, distance between the
wellbore and a gridblock face is 0.3m) for cases A and B. Permeability inside
those blocks was changed to represent the damaged region. Skin zone in the
analytical solution was modeled defining the skin radius required so that the
cross-sectional damaged region would present the same area as the numerical
simulator, yielding a skin radius of 0.35 m. For Case C, the gridblock contain-
ing the well presents height and width equal to 1.0 m. Therefore, the skin zone
radius in the analytical model was defined as 0.56 m.

Figs. 2.4 and 2.5 display the results for pressure and pressure derivative
obtained from the proposed formulation considering the reservoir properties
of Case A. The dashed lines denote the theoretical constant pressure deriva-
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Figure 2.3: Relative permeability curves
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Figure 2.4: Pressure data for Case A during injection

tive levels evaluated as detailed in Section 2.3.4. Early-time derivative was
determined using Eqs. (2-29) and (2-34). Late-time derivative level during in-
jection was computed using Eq. (2-31), as the flood front profile indicated that
the "second radial - first radial" flow regime was occurring at the moment of
shut-in. During falloff, Eq. (2-35) was used to determine the late-time pres-
sure derivative. Pressure derivative during falloff was taken with respect to the
equivalent time te = tp∆t

tp+∆t and plotted against the elapsed time ∆t.
A good agreement between both analytical and numerical pressure curves

is observed, although pressure derivative presents slight divergences. The
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Figure 2.5: Pressure data for Case A during falloff
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main reason for the derivative mismatch is given by the distinct skin zone
representation in the flow simulator and in the proposed model. While the
former depicts the damaged region as cubes, the latter accounts for a cylindrical
skin zone radius. Moreover, the mismatch identified at falloff intermediate-
times may be related to the employed grid refinement. Divergences at early
falloff times might also be associated with the hypothesis that the zero-rate
pulse equally propagates in all layers. Nonetheless, the overall agreement is
quite good.

Pressure derivative profile indicates that the first radial flow regime did
not last long enough so that a clear constant derivative level could be noticed
at early injection times. During falloff, pressure derivative is approximately
constant until ∆t ' 0.01 h. However, as explained in Section 2.3.4, this level
reflects total mobility inside the flooded zone, rather than the properties of
oil or water. It is important to recall that the duration of early-time radial
flow is directly influenced by the wellbore length and formation thickness
[18, 21]. Thus, in cases where the wellbore length is higher, the early-time
pressure derivative level may be observed. Early-time derivative during falloff
fails to attain the theoretical level, since a late-radial flow was occurring at
the moment of shut-in [6]. On the other hand, at late-times pressure derivative
clearly attains the constant levels forecast by Eq. (2-31) during injection and
Eq. (2-35) during falloff.

During injection, pressure derivative attains negative values between
t ' 0.009 h and t ' 0.2 h. This behavior consists of a characteristic signature of
a reservoir with formation damage [10, 32]. After the flood front overcomes the
damaged region, pressure derivative rises again and, hence, pressure increases.
During falloff, however, it is not possible to identify the existence of skin effects
from pressure derivative profile [11, 12].

Figs. 2.6 and 2.7 exhibit a comparison between the proposed two-phase
model and the single-phase solution from Pan et al. [31], considering the
reservoir properties of Table 2.1. Endpoint properties of oil and water were
used to compute the single-phase pressure changes. During injection, pressure
behavior is similar to the single-phase oil solution at early-times. As the flooded
region propagates, pressure then detaches from the oil solution presents and
intermediate behavior between the two presented single-phase solutions. The
late-time constant derivative level during injection is slightly lower than the
single-phase oil derivative. Eq. (2-31) evidences that pressure derivative at
late-times is influenced by the flooded zone and, therefore, differs from the
single-phase oil behavior.

During falloff, early-time pressure derivative reflects neither oil nor water
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Figure 2.6: Comparison to single-phase responses for Case A during injection

properties, as evidenced in Figs. 2.6 and 2.7. Instead, it is influenced by the
total mobility inside the swept area [11]. As flow-rate inside the flooded region
tends to zero, then pressure becomes closer to the single-phase oil solution,
which is more clearly noticed in the pressure derivative behavior.

Figs. 2.8 and 2.9 exhibit the results for injection and falloff periods
considering the properties of Case B. This case aims to verify if the hypothesis
that the zero-rate pulse equally propagates in all layers will hold in a 3-layered
reservoir.

Again, the overall agreement between the analytical solutions and the
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Figure 2.7: Comparison to single-phase responses for Case A during falloff
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Figure 2.8: Pressure data for Case B during injection

numerical simulator is quite good, although some divergences were observed.
Flood front profile indicates that, once again, the "second radial - first radial"
flow regime occurs at late-times during the injection period. Therefore, the
theoretical pressure derivative level was determined from Eq. (2-31). Late-
time derivative during falloff, in its turn, was computed from Eq. (2-35), while
early-time derivative levels were evaluated using Eqs. (2-29) and (2-34).

The disagreement between analytical and numerical data for Case B is
mainly explained by the same reasons detailed in the discussion of Case A: grid
refinement and different skin zone representations. Moreover, the numerical
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Figure 2.9: Pressure data for Case B during falloff

DBD
PUC-Rio - Certificação Digital Nº 1812638/CA



Chapter 2. Analytical Solution for Injectivity and Falloff Tests in Stratified
Reservoirs with Multilateral Horizontal Wells 42

simulator allows the zero-pulse rate to propagate differently in each layer,
whereas the analytical solution assumes that this propagation is equal in
all layers. This might explain the divergences observed in pressure derivative
behavior during early falloff times. Nonetheless, numerical and analytical data
converge after a shut-in time of around 0.004 h and a good agreement is
observed until the end of the test. Grid refinement might also be related to
this mismatch at early falloff times. Pressure derivative at early falloff times
is slightly lower than the theoretical level foreseen by Eq. (2-34). Again, the
reason for that is given by the injection time tp, which was long enough so that
the early radial flow had already ended at the moment of shut-in. Thus, Eq.
(2-34) is not valid.

Figs. 2.10 and 2.11 show the comparison between the two-phase solution
and the single-phase pressure responses using oil and water endpoint prop-
erties. It is possible to notice that, similarly to Case A, pressure behavior
at early injection times is close to the single-phase oil solution. Then, as the
flooded region increases, pressure detaches from the single-phase oil solution.
At late-time, pressure derivative stabilizes at a level slightly lower than the oil
derivative, which is consistent with Eq. (2-31).

During falloff, pressure derivative starts approximately at the single-
phase water level and quickly detaches from it. The increased wellbore length
and absence of well off-centering in Case B possibly explain why a similar
behavior was not identified in Case A. As flow-rate throughout the reservoir
reaches zero, the two-phase falloff derivative converges to the single-phase oil
solution.
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Figure 2.10: Comparison to single-phase responses for Case B during injection
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Figure 2.11: Comparison to single-phase responses for Case B during falloff

The results for Case C are exhibited in Figs. 2.12 and 2.13. This case
presents the same properties as Case A, except for oil viscosity and skin zone
parameters. The endpoint mobility ratio indicates that flow is favorable to oil.
Thus, water saturation profile is not so smooth, and the numerical simulator
presents some inherent issues due to the existence of shocks in the solution
[16]. Therefore, numerical data present some instability during the injection
period, which is more evidently perceived at the pressure derivative profile.

Despite that, pressure change curves present a good agreement. The
overall derivative behavior during the injection period is also quite similar.
Pressure derivative rises until a certain point, then a sharp drop is observed
and, afterwards, the derivative stabilizes at a level, indicating that a late radial
flow regime occurs. The blunt shift in pressure derivative that occurs around
t ' 0.2 h signs the moment when the flood front overcomes the skin zone
radii [32]. Figs. 2.12 and 2.13 evidence that this derivative shift occurs at the
same time for both analytical and numerical data. This endorses that the area
equivalence used to define the skin zone radius in the analytical model was
accurate.

During falloff, the flood front remains stationary. Thereby, the numerical
instability issues are mitigated. For this reason, a better agreement between
simulated and analytical data is observed. The detachment in pressure deriva-
tive is possibly related to the grid discretization. Nonetheless, analytical falloff
solution fits the numerical data quite well.

The comparison between the two-phase solutions and the single-phase
behavior computed using oil and water endpoint properties is exhibited in
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Figure 2.12: Pressure data for Case C during injection

Figs. 2.14 and 2.15. The mobility ratio in Case C is closer to unity than in
cases A and B. Hence, the single-phase responses from oil and water are not
as far from each other as in the previous cases. Despite that, it is still possible
to notice that pressure behavior during early injection times is similar to the
single-phase oil solution. Then, as the flooded region increases, pressure change
curve detaches from the oil solution.

Between t ' 0.1 and t ' 0.3 h, pressure change becomes close to
the water solution. This behavior however, is explained by the flood front
overcoming the skin zone, rather than a similarity between the two-phase and
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Figure 2.13: Pressure data for Case C during falloff
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Figure 2.14: Comparison to single-phase responses for Case C during injection

the single-phase water solutions, as evidenced by pressure derivative.
During falloff, it is possible to identify that pressure change at early-

times is close to the single-phase oil solution. Although pressure derivative in
Case C remains at approximately equal to the single-phase water solution until
around ∆t ' 0.003 h, Eq. (2-34) is not applicable, since early radial flow during
injection ended before the well was shut-in. Afterwards, as flow-rate inside the
flooded region reaches zero, the derivative profile matches the single-phase oil
solution. A similar behavior was observed in the previous cases.

The reservoir equivalent permeabilities were estimated from the constant
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Figure 2.15: Comparison to single-phase responses for Case C during falloff
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Case (kxy)eq true (kxy)eq est. Error
(mD) (mD) (%)

Injection A 907 861 -5.1
Falloff 869 -4.2

Injection B 783 753 -3.8
Falloff 858 9.5

Injection C 907 891 -1.8
Falloff 880 -3.0

Table 2.2: Estimated equivalent permeabilities

late-time pressure derivative levels. Results are reported in Table 2.2. Since the
estimated permeabilities were computed from late-time data, they reflect the
equivalent permeability in the horizontal plane. Permeabilities were computed
by replacing the observed constant derivative level in equations (2-31) and
(2-35).

Early-time data were not used to evaluate the reservoir permeability
because, for all cases, no constant derivative level was observed during injection
and the early-time falloff derivative is not related to water or oil properties. In
a real field test, however, early-time data may be affected by wellbore storage.
Thus, it might be unfeasible to obtain the equivalent permeability in the zx-
plane in a practical case.

Table 2.2 shows that the equivalent permeability could be computed with
low error from both injection and falloff data. Nonetheless, it is important to
notice that the application of Eq. (2-31) requires knowledge over the wellbore
effective length. In a real field test, the total drilled length may not correspond
to the total well length [17, 31]. Thereby, in practice, falloff data provide a
more reliable estimate for the reservoir equivalent permeability.

2.5
Summary and Conclusions

The main contribution of this Chapter is to present new analytical solu-
tions for analyzing injectivity tests under two-phase oil-water flow conditions
in multilayer reservoirs with multilateral horizontal wells, considering both
injection and falloff periods. It was assumed no formation crossflow. The pro-
posed formulation is based on the single-phase solution for multilateral wells
achieved by Pan et al. [31] and the theory for injectivity tests in single-layer
reservoirs developed by Peres and Reynolds [10] and Peres et al. [11].

The developed analytical model was achieved under some simplifying
hypotheses. Some of those assumptions are quite common in the development
of analytical solutions for well transient analysis, such as reservoir initially in
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equilibrium and slightly compressible fluids. On the other hand, some signif-
icantly strong assumptions were also made (e.g. negligible wellbore storage
effects and stratified layers).

The developed formulations show that the same equations that depict
pressure behavior in multilayer reservoirs with vertical wells [12, 14, 16, 32]
are also applicable to horizontal wells, provided that the suitable adjustments
are made. We have shown how these adjustments should be made.

The proposed solutions were verified by comparison to the results of a
commercial flow simulator. Results showed that, although some divergences
between the presented solution and the numerical simulator were observed,
the overall agreement was good. This indicates that the hypotheses and
approximations made are acceptable. The good match between analytical and
numerical data during falloff also endorses the assumption originally made by
Bela et al. [12] that the zero-rate pulse equally propagates in all layers.

Comparison with the single-phase oil and water solutions showed that,
during injection, early-time pressure data presents a similar behavior to the
single-phase oil solution. As the flood front propagates, pressure detaches from
the single-phase oil solution. However, pressure derivative does not match
the single-phase water level, unlike what happens in injectivity tests with
vertical wells. During falloff, early-time data presents an intermediate behavior,
between the single-phase oil and water solutions. Late-time falloff pressure
derivative, collapses to the single-phase oil derivative, as flow-rate inside the
flooded region becomes numerically equal to zero.

Moreover, early and late-time approximations for the theoretical early
and late-time pressure derivative levels were proposed. While the early-time
derivative level may not be identified, due to the wellbore and formation
features, the reservoir horizontal equivalent permeability could be estimated
with good accuracy. In a real field application, we recommend that the falloff
derivative level should be used to estimate the permeability, as it does not
require knowledge over the total effective drilled length.

DBD
PUC-Rio - Certificação Digital Nº 1812638/CA



3
Impulse Functions Applied to Compute Pressure Change
During Injectivity Tests

This Chapter introduces an alternative formulation to evaluate pressure
change during injectivity tests, based on Green’s functions (or impulse func-
tions). Section 3.1 motivates the development of this alternative solution and
provides a brief literature overview about analytical solutions for two-phase
flow. Section 3.2 details the proposed model to compute pressure change. The
model validation is presented in Section 3.3, where the proposed formulation
is compared to the previously existing solutions for pressure change during in-
jectivity tests and to a commercial numerical flow simulator. Lastly, the main
conclusions of this Chapter are found in Section 3.4.

3.1
Introduction

Thompson and Reynolds [15] developed a solution for single-layered
radially heterogeneous reservoirs. Their model has inspired the development
of analytical solutions for pressure change during injectivity tests [8, 9, 10, 11,
12, 16, 46].

Banerjee et al. [9] presented a formulation for injection/falloff tests in
single-layer reservoirs with vertical wells. As outlined by Banerjee et al. [9],
two-phase models for pressure change based on the Thompson and Reynolds’
[15] theory assume that the rate-transient pulse propagates faster than the
flood front. Hence, flow-rate inside the flooded region remains constant during
the injection period. Fig. 3.1 shows a schematic representation to illustrate
this assumption.

Peres and Reynolds [10] established objective criteria to verify that, in
single-layer reservoirs, such condition holds for most cases of practical interest
and also proposed a solution for injectivity tests in single-layer reservoirs with
horizontal wells.

Boughara and Reynolds [17] included the thermal effects into the formu-
lation and applied a non-linear regression method to estimate reservoir prop-
erties. Bonafé et al. [8] provided an approximate model for injectivity tests in
single-layer reservoirs considering a multiple flow-rate scheme.
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Figure 3.1: Schematics of rate transient front and water saturation front in a
single-layer reservoir

Analytical solutions for injectivity tests in multilayer reservoirs [12, 16,
46] were inspired by the single-layer solutions [8, 9, 10, 11, 17] and, hence, by
the Thompson and Reynolds’ [15] steady-state theory. However, in multilayer
reservoirs, layer flow-rates at the wellbore may change in time due to differences
between layer properties [3, 5, 14, 16, 32]. This also includes the formulation
presented in Section 2.3.2, which evidenced that layer flow-rates must be
updated at each time step.

Fig. 3.2 exhibits an illustrative representation of layer flow-rate profiles at
the wellbore and the respective rate transient fronts in a two-layered reservoir.
As may be observed in Fig. 3.2, it is not possible to assure that flow-rate is
constant throughout the flooded region in multilayer systems, due to the rate
transient that occurs at the wellbore. Therefore, in a strict sense, the Thompson
and Reynolds’ [15] steady-state theory does not hold for multilayer reservoirs.
This means, for instance, that flow-rate in layer j may not be written out of
the integral sign in Eq. (2-7), as it may change with the radius.

Neto et al. [47] proposed an alternative solution for injectivity tests in
single-layer reservoirs. The flooded zone and the uninvaded region are described
using a radially composite reservoir approach, where the interface between

Figure 3.2: Layer flow-rate profiles at the wellbore (on the left) and rate and
saturation fronts in each layer (on the right)
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regions (that is, the water front radius) moves in time [43]. The formulation
presented by Neto et al. [47] does not require flow-rate within the flooded region
to be constant. On the other hand, it assumes a piston-like fluid displacement.

Mastbaum et al. [48] also employed a radially heterogeneous reservoir
model to develop a solution for multilayer stratified reservoirs, while Viana
[49] included formation crossflow effects into the solution. The formulation
proposed by Mastbaum et al. [48] and Viana [49] consists of solving, at each
time step, a linear system to determine the pressure change. The order of this
linear system progressively increases as the number of reservoir layers increases.

Green’s functions (or impulse functions) for single-phase flow of slightly
compressible fluids in single-layer reservoirs are known [50, 51]. Kuchuk and
Wilkinson [52] developed an algorithm to determine the pressure response in
commingled reservoirs using the appropriate single-layer impulse function for
each layer. This algorithm to compute pressure change in stratified reservoirs
was endorsed by Spath et al. [37], in a work that also depicted how layer flow-
rates at the wellbore may be computed. Lu et al. [53] applied Green’s functions
to develop a formulation for well tests in two-layer reservoirs with formation
crossflow.

Thereby, solutions for conventional well testing based on Green’s func-
tions are already available. However, to the best of the author’s knowledge,
impulse functions have not yet been applied to evaluate the pressure change
in reservoirs under two-phase flow, which is the case of injectivity tests.

Therefore, the main novelty of this Chapter is to obtain the impulse
function for two-phase flow in single-layer reservoirs. A radially composite
reservoir approach was employed to account for the distinct fluids (oil and
water) that flow throughout the reservoir during an injectivity test. The single-
layer solution may be coupled to the algorithm presented by Kuchuk and
Wilkinson [52] and Spath et al. [37] to obtain pressure and flow-rate profiles
in multilayer reservoirs. Additionally, an approximate solution for pressure
change during injectivity tests in single-layer reservoirs with horizontal wells is
derived by applying Newman’s product [54, 55] and the presented single-layer
formulation. In this work, we focus only on the injection period, that is, the
falloff period was not considered.

The proposed models were validated via comparison, for a set of syn-
thetic cases, to a commercial finite difference-based flow simulator and to the
previously existing solutions [10, 16, 48]. We also provide a brief discussion
regarding the radial flow regime that may be observed during an injectivity
test. Furthermore, the Delta Transient Method [56, 57] was applied to estimate
layer permeabilities in the multilayer cases.
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3.2
Proposed Formulation

This Section outlines the proposed formulation for injectivity tests using
impulse functions. The reservoir is assumed to be homogeneous, laterally infi-
nite and initially in equilibrium. Fluids are considered to be slightly compress-
ible, with constant viscosity and compressibility. The presented formulation
considers that capillary and gravitational forces are negligible. An isothermal
flow is considered and a piston-like fluid displacement is assumed. Finally, all
computations were made assuming a consistent set of units.

3.2.1
Impulse Function for Single-Layer Reservoirs with Vertical Wells

In this Section, the flooded region resulting from water injection is rep-
resented using a radially composite approach. Water injection in a single-layer
reservoir, then, may be understood as a problem of a radially heterogeneous
reservoir with a moving boundary rF (t) [43, 48, 49]. Formation damage is in-
cluded into the model by defining an annular region, concentric to the wellbore
axis, where the permeability ks is different than the reservoir permeability k
[47, 58]. Wellbore storage will be neglected in a first moment and incorporated
into the model at the end of this Section.

Figs. 3.3 and 3.4 show a schematic representation of the reservoir top and
lateral view at two distinct stages: while the water front is within the damaged
region and after the flooded region has overcome the skin radius, respectively.
In Figs. 3.3 and 3.4, the skin radius rskin is represented as rs for convenience,
while rw denotes the wellbore radius, rF denotes the water front radius and re
denotes the reservoir outer radius.

The water front radius at each time step is determined according to

Figure 3.3: Reservoir top (on the left) and lateral views for rF < rskin.
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Figure 3.4: Reservoir top (on the left) and lateral views for rF > rskin.

the Buckley-Leverett [40] theory, using Eq. (2-3). Since a piston-like fluid
displacement is considered in this Chapter, the fractional flow derivative f ′w is
given by:

f ′w = 1
1− Swi − Sor

(3-1)

The reservoir, then, may be split into three distinct regions, depending
on the flood front position. While the water front is within the damaged zone:

Region 1: goes from r = rw to r = rF (t)

Region 2: goes from r = rF (t) to r = rskin

Region 3: goes from r = rskin to the reservoir outer radius

And after the water front has overcome the skin zone:

Region 1: goes from r = rw to r = rskin

Region 2: goes from r = rskin to r = rF (t)

Region 3: goes from r = rF (t) to the reservoir outer radius

According to the model assumptions mentioned above, flow in porous
media obeys the diffusivity equation given by [5, 58]:

PDE:

1
r

∂

∂r

(
r
∂∆pi
∂r

)
− 1
ηi

∂∆pi
∂t

= 0, (3-2)

where the subscript i ∈ {1, 2, 3} indexes the region, r stands for the radius, t
denotes the time and ∆p = p(r, t) − p(r, t = 0) indicates the pressure change
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resulting from the water injection. The hydraulic diffusivity ηi is defined as
[3, 53]:

ηi = kiλi
φict

, (3-3)

where λi = kri/µi represents the fluid mobility [10, 12, 14, 16], considering the
suitable fluid that flows in region i; that is, oil or water.

The initial condition, inner and outer boundary conditions for the
problem are given by:

Initial Condition (IC):

∆pi(r, t = 0) = 0. (3-4)
Inner Boundary Condition (IBC):

2πhk1λ1

(
r
∂∆p1

∂r

)∣∣∣∣∣
r→rw

= δ(t), (3-5)

where h stands for the reservoir thickness and δ denotes the Dirac delta
function. The IBC defined in Eq. (3-5) represents an instant injection of a
unitary volume of water at t = 0.

Outer Boundary Condition (OBC):

lim
re→∞

∆p3(r = re, t) = 0. (3-6)
Eq. (3-6) represents the outer boundary condition for a laterally infinite

reservoir [5, 12, 20, 47]. The proposed formulation is also applicable for closed
boundary or constant pressure condition at the reservoir outer boundary,
provided that Eq. (3-6) is replaced by the suitable boundary condition.

Note that the problem defined by Eqs. (3-2) to (3-6) remains ill-posed
so far, as the PDE presented in Eq. (3-2) demands two spatial conditions
per region. Since the radially heterogeneous reservoir model consists of three
distinct regions, four spatial conditions are still needed to obtain a well-
posed problem. The missing spatial conditions are obtained from the pressure
continuity and mass conservation at the interface between regions, yielding
coupling conditions between regions (or CCRs) [24, 47, 48, 49, 58]:

Pressure CCR:

lim
r→r−

i

∆pi(r, t) = lim
r→r+

i

∆pi+1(r, t). (3-7)

Flow-rate CCR:

lim
r→r−

i

kiλi

(
r
∂∆pi(r, t)

∂r

)
= lim

r→r+
i

ki+1λi+1

(
r
∂∆pi+1(r, t)

∂r

)
, (3-8)
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where i ∈ {1, 2} in Eqs. (3-7) and (3-8) indexes the region. Eqs. (3-7) and (3-8)
are required to assure that pressure and flow-rate profiles along the reservoir
are continuous.

Applying Laplace transform to the problem defined by Eqs. (3-2) to (3-8),
the following ODE is obtained:

1
r

∂

∂r

(
r
∂∆pi
∂r

)
− u∆pi

ηi
= 0, for i ∈ {1, 2, 3}, (3-9)

where u denotes the Laplace variable.
The general solution of Eq. (3-9) is given by [5, 20, 47, 49, 59]:

∆pi(r, u) = aiI0

(
r

√
u

ηi

)
+ biK0

(
r

√
u

ηi

)
. (3-10)

Thus, taking the derivative of Eq. (3-10) with respect to the radius [60]:

∂∆pi
∂r

(r, u) = ai

√
u

ηi
I1

(
r

√
u

ηi

)
− bi

√
u

ηi
K1

(
r

√
u

ηi

)
. (3-11)

Relations between the coefficients ai and bi in each region may be
obtained from the boundary and coupling conditions. The outer boundary
condition defined in Eq. (3-6) implies that a3 = 0, due to the limits of the
modified Bessel’s functions when the argument goes to infinity [5, 47, 60].

From Eqs. (3-5) and (3-11) and the Laplace transform of the Dirac delta
function [60], the IBC in Laplace domain may be written as:

a1I1

(
rw

√
u

η1

)
− b1K1

(
rw

√
u

η1

)
= 1
rw

√
η1

u

1
2πhk1λ1

. (3-12)

From Eq. (3-10) and the CCRs defined in Eq. (3-7), pressure equality at
the interface between regions implies that:

aiI0

(
ri

√
u

ηi

)
+ biK0

(
ri

√
u

ηi

)
− ai+1I0

(
ri

√
u

ηi+1

)
− bi+1K0

(
ri

√
u

ηi+1

)
= 0,

(3-13)
for i ∈ {1, 2}.

Finally, from Eqs. (3-10) and (3-8), mass conservation at the interface
between regions is expressed as:

ai
ukiλi√
ηi
I1

(
ri

√
u

ηi

)
− bi

ukiλi√
ηi
K1

(
ri

√
u

ηi

)
−

−ai+1
uki+1λi+1√

ηi+1
I1

(
ri

√
u

ηi+1

)
+ bi+1

uki+1λi+1√
ηi+1

K1

(
ri

√
u

ηi+1

)
= 0.

(3-14)

Rearranging Eq. (3-14):
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aiI1

(
ri

√
u

ηi

)
− biK1

(
ri

√
u

ηi

)
+

+ ki+1λi+1

kiλi

√
ηi
ηi+1︸ ︷︷ ︸

=γi

[
−ai+1I1

(
ri

√
u

ηi+1

)
+ bi+1K1

(
ri

√
u

ηi+1

)]
= 0,

(3-15)

for i ∈ {1, 2}.
Writing Eqs. (3-12), (3-13) and (3-15) as a linear system:

[M ]



a1

b1

a2

b2

b3


=



1
rw

√
η1
u

1
2πhk1λ1

0
0
0
0


, (3-16)

where matrix M is defined as:

M =



I1

(
rw
√

u
η1

)
−K1

(
rw
√

u
η1

)
0 0 0

I0

(
r1
√

u
η1

)
K0

(
r1
√

u
η1

)
−I0

(
r1
√

u
η2

)
−K0

(
r1
√

u
η2

)
0

I1

(
r1
√

u
η1

)
−K1

(
r1
√

u
η1

)
−γ1I1

(
r1
√

u
η2

)
γ1K1

(
r1
√

u
η2

)
0

0 0 I0

(
r2
√

u
η2

)
K0

(
r2
√

u
η2

)
−K0

(
r2
√

u
η3

)
0 0 I1

(
r2
√

u
η2

)
−K1

(
r2
√

u
η2

)
γ2K1

(
r2
√

u
η3

)


,

(3-17)
where:

γi = ki+1λi+1

kiλi

√
ηi
ηi+1

. (3-18)

Solving the linear system defined in Eq. (3-16), the coefficients ai and bi
in each region may be determined. Thereby, pressure change at the wellbore
can be evaluated as:

Gw(u) = a1I0

(
rw

√
u

η1

)
+ b1K0

(
rw

√
u

η1

)
. (3-19)

Eq. (3-19) represents the pressure response measured at the wellbore
due to the instant injection of a unitary volume of water into the reservoir at
t = 0, as defined in the IBC given by Eq. (3-5). Thus, the term Gw denotes
the impulse function (or Green’s function) in Laplace domain [50, 55], as a
consequence of an instantaneous water injection of unitary volume. Note that
the impulse function at the wellbore must be evaluated using the properties
corresponding to Region 1, which is the region that contains the well. Thus,
pressure change during an injectivity test may be determined as [50, 59, 63]:

∆pwf (u) = qinj(u)Gw(u). (3-20)
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Figure 3.5: Schematics of a multilayer reservoir with vertical injector well

Finally, wellbore storage effects may be easily incorporated into Eq.
(3-20) using the following relation [5, 22, 37, 63]:

∆pwf (u,C) =
∆pwf (u)

1 + u2C∆pwf (u)
, (3-21)

where C stands for the storage coefficient.

3.2.2
Extension to Multilayer Reservoirs

Now, consider a reservoir with n distinct layers, such as portrayed in
Fig. 3.5, which shows an schematic representation for a given time when the
flood front has already overcome the damaged region in all layers. Each layer
is homogeneous and may present distinct properties, such as permeability,
porosity and thickness. Skin zone properties may also be different in each
layer. Besides, pressure change is assumed to be the same in all layers (apart
from the hydrostatic effect).

Applying Eq. (3-20) into a given reservoir layer j [37, 52]:

∆pwfj(u) = qj(u)Gw,j(u). (3-22)
By model hypothesis, pressure change at the wellbore is the same in all

layers, apart from the hydrostatic effect. Therefore [12, 16, 30, 31]:

∆pwf1(t) = ∆pwf2(t) = · · · = ∆pwfn(t) = ∆pwf (t). (3-23)
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Thus, from Eqs. (3-22) and (3-23), flow-rate in layer j is given by:

qj =
∆pwf
Gw,j

. (3-24)

Summing Eq. (3-24) for all layers:
n∑
j=1

qj = ∆pwf
n∑
j=1

1
Gw,j

. (3-25)

Considering that the injection flow-rate qinj is constant during the test,
mass conservation inside the wellbore implies that [16, 31]:

n∑
j=1

qj(t) = qinj =⇒
n∑
j=1

qj = qinj
u
. (3-26)

Hence, from Eqs. (3-25) and (3-26):

∆pwf = qinj
u

n∑
j=1

(
1

Gw,j

)−1

. (3-27)

Eq. (3-27) was proposed by Spath et al. [37] to determine the pressure
change in multilayer reservoirs. This formulation was originally developed by
Kuchuk and Wilkinson [52]. Unlike the work presented in this Chapter, Kuchuk
and Wilkinson [52] also accounted for an eventual difference between initial
pressures in each layer.

Then, a computational implementation of the formulation detailed in this
Section may be developed based on the flowchart exhibited in Fig. 3.6.

Figure 3.6: Flowchart to implement the proposed formulation
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3.2.3
Application to Single-Layer Reservoirs with Horizontal Wells

In reservoirs with horizontal wells, flow in each coordinate axis affects
the pressure change behavior. The problem, then, is modeled by the following
PDE [6, 30]:

∂2∆p
∂x2 + ∂2∆p

∂y2 + ∂2∆p
∂z2 −

1
η

∂∆p
∂t

= 0, (3-28)

There already exist analytical models for single-phase flow in single-layer
reservoirs with horizontal wells [4, 6, 21, 33]. For a uniform influx wellbore,
the solution in real time domain is obtained by applying Newman’s [54, 55]
product and impulse functions [18, 22, 50]:

∆p(x, y, z, t) = q

t∫
0

∆px(x, τ)
Lφct

∆py(y, τ)∆pz(z, τ)dτ. (3-29)

where ∆px, ∆py and ∆pz denote the respective impulse functions in x-, y- and
z-directions. This formulation is detailed in Appendix A.

When it comes to water injection in single-layer reservoirs with horizontal
wells, an analytical model was developed by Peres and Reynolds [10]. Their
formulation considers that pressure change at the wellbore may be computed
as the sum of two terms: one that comes from the single-phase oil solution and
another that accounts for the mobility differences within the flooded region,
considering the flooding patterns proposed by Deppe [41]. Their formulation
was presented in Section 2.3.1.

During injectivity tests with horizontal wells, the flood front initially
propagates in the vertical plane perpendicular to the wellbore axis, as explained
by Peres and Reynolds [10] and Peres et al. [11]. This effect was also commented
in Sections 2.3.1 to 2.3.3.

Therefore, this Section proposes to approximate an injectivity test in a

Figure 3.7: Horizontal injector well model (lateral view)
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Figure 3.8: Horizontal injector well model (view of the zx-plane)

single-layer reservoir with horizontal well by a radially heterogeneous reservoir
model. The reservoir is assumed to be isotropic, that is, kx = ky = kz = k.
Fig. 3.7 shows a schematics of a single-layer reservoir with a horizontal injector
well, for a given moment when the flood front is beyond the damaged region
and assuming that the wellbore is parallel to the y-axis. Fig. 3.8 exhibits the
view in zx-plane of this reservoir model.

As evidenced in Fig. 3.7, the approximated radially heterogeneous model
for injectivity tests with horizontal wells considers that the flood front propa-
gates only along the zx-plane. That is, water saturation beyond the wellbore
tips is assumed to remain constant and equal to the initial water saturation
Swi. This assumption, albeit unrealistic, is expected to be reasonable, consider-
ing that the wellbore length is typically much longer compared to the reservoir
thickness. Besides, water flow beyond the wellbore tips at early-times is also
unaccounted for in the model proposed by Peres and Reynolds [10].

One should notice, however, that waterfront propagation in horizontal
plane becomes increasingly more relevant as the injection goes on [10, 41].
Thus, the radially heterogeneous model exhibited in Figs. 3.7 and 3.8 is valid
only in an approximate sense, as it does not accurately describe the flood front
propagation.

On the other hand, pressure transient front does not depend on the
flood front position. Hence, considering the notation defined by Peres and
Reynolds [10] that accounts for both pressure transient front and water front,
the approximate radially heterogeneous reservoir model shown in Figs. 3.7 and
3.8 is applicable for the "first radial - first radial", "first linear - first radial"
and "second radial - first radial" flow-regimes.

Under those assumptions, and defining r2 = x2 +z2, pressure change dur-
ing injectivity tests in single-layer reservoirs with horizontal wells is governed
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by the following PDE:

∂2∆pi
∂y2 + 1

r

∂

∂r

(
r
∂∆pi
∂r

)
− 1
ηi

∂∆pi
∂t

= 0. (3-30)

Then, considering the impulse function defined in Section 3.2.1, this work
proposes that pressure change at the wellbore in single-layer reservoirs with
horizontal wells may be evaluated as:

∆p(y, r = rw, t) = q

t∫
0

∆py(y, τ)L−1
{
Gw

}
(τ)dτ, (3-31)

where Gw is the impulse function defined in Eq. (3-19) and ∆py(y, τ) stands
for the impulse function in y-direction, as defined in Eq. (A-3). The images
method can be applied to depict the reservoir vertical boundaries [33, 62].

Eq. (3-31) consists of an unorthodox application of Newman’s [54, 55]
product, since it is derived from a non-homogeneous reservoir model, as shown
in Figs. 3.7 and 3.8. Appendix B offers a sketch proof for why Eq. (3-31)
can describe the pressure change considering the reservoir model displayed in
Figs. 3.7 and 3.8. A discussion regarding the accuracy of Eq. (3-31) is made
in Section 3.3. A more solid proof for why Eq. (3-31) would be an interesting
topic for further research but is out of the scope of this work.

3.3
Results and Discussion

A comparison was made between a commercial flow simulator [45] and
the formulations proposed in Section 3.2 in order to evaluate its accuracy on a
set of synthetic cases. Additionally, the existing solutions for injectivity tests in
multilayer reservoirs with vertical wells [16, 48] and single-layer reservoirs with
horizontal wells [10] were also compared to the models presented in Section
3.2.

In all cases, a piston-like fluid displacement was considered. The injection
period was set as 96 h. This time range is expected to be long enough for a
radial flow regime to be identified in all cases. Relative permeability data may
be seen in Fig. 3.9. These relative permeability set corresponds to the endpoints
of the relative permeability curves displayed in Fig. 2.3. However, since the
formulation presented in Section 3.2 assumes a piston-like fluid displacement,
only the relative permeability endpoints are considered in this Chapter.

Besides, wellbore storage effects were neglected, to assure that some
characteristic features of two-phase flow behavior may be observed (such as the
derivative signature that occurs in reservoirs with formation damage [10, 14]).
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Figure 3.9: Relative permeability data

3.3.1
Results for Multilayer Reservoirs with Vertical Wells

The formulation proposed in Section 3.2.2 was implemented and com-
pared to a commercial flow simulator [45]. A cylindrical reservoir grid was
employed, with 70 blocks in the radial direction and 1 block in the angular
direction. In the vertical direction, each grid block represented a distinct layer.
The reservoir outer radius was set as 4 km. The innermost grid block is 0.1
diameter wide and blocks get coarser as the distance to the wellbore increases.

The solutions developed by Barreto et al. [16] and Mastbaum et al.
[48] for injectivity tests in multilayer reservoirs were also implemented and
compared to the suggested model. Table 3.1 displays the reservoir properties
for the multilayer cases. In all cases, a constant injection flow-rate of 500 m3/d
was considered.

Fig. 3.10 displays the loglog graphs of pressure and pressure derivative for
Case A. Pressure data are represented in black and derivative curves are shown
in blue. The formulation suggested in this work is indicated by circles. Triangles

Case µo k h
φ

ks rs S(cP) (mD) (m) (mD) (m)

A 4.8
500 15 0.11

200 (all) 0.4 (all)
2.1

600 20 0.25 2.8
700 25 0.33 3.5

B 1.1
500 15 0.11

200 (all) 0.4 (all)
2.1

600 20 0.25 2.8
700 25 0.33 3.5

C 4.8 500 20 0.11 200 (all) 0.4 (all) 2.1
700 15 0.25 3.5

Table 3.1: Reservoir properties for the multilayer cases
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Figure 3.10: Pressure and pressure derivative curves for Case A

denote the numerical simulator. The dashed lines stand for the model proposed
by Mastbaum et al. [48] and the solid lines represent the solution developed by
Barreto et al. [16]. The horizontal dashed line indicate the theoretical derivative
level associated with oil properties, while the horizontal line in dash-dot pattern
stands for the water properties theoretical derivative level.

A great agreement between all methods is observed. The sharp derivative
drop that occurs at early times reflects the existence of skin effects [10, 14, 32].
Pressure derivative considering the numerical simulator data shows some
divergence from the analytical solutions during this period. This may be related
to the numerical grid discretization. Besides, the piston-like fluid displacement
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Figure 3.11: Layer flow-rate profiles for Case A (layer 1 in black; layer 2 in
blue; layer 3 in red)
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is more accurately depicted by the analytical models than the flow simulator.
Still, after the damaged region is swept by water, all derivative curves converge.

It is also important to highlight that all methods attained the theoretical
derivative level associated to the water properties. This indicates that the
proposed formulation may be applied to estimate the reservoir equivalent
permeability, based on the constant derivative level [9, 12]. This procedure
to estimate the reservoir equivalent permeability was also explained in Section
2.4. Fig. 3.10 also shows that the derivative curves attain values close to the oil
derivative level at early-times but quickly detaches from this theoretical level,
as the derivative drop starts.

Fig. 3.11 presents the layer flow-rate profiles for each methods, in semilog
scale. The black curves denote layer 1, while blue curves stand for layer 2 and
red curves represent layer 3. Fig. 3.11 evidences that layer flow-rates at the
wellbore change in time. Hence, as mentioned in Section 3.1, it is unfeasible
to assure that flow-rate within the swept zone remains constant in multilayer
reservoirs. Layer 1 presents the lowest flow capacity (that is, the permeability-
thickness product), while layer 3 presents the highest flow capacity. Thereby,
flow-rate in layer 1 is lower than in layer 2, which is lower than in layer 3.

As disclosed in Fig. 3.11, the proposed formulation exhibits a close
convergence to the simulated data and the analytical model from Mastbaum
et al. [48]. However, flow-rate profiles computed using the analytical solution
developed by Barreto et al. [16] diverged from the other methods in layers 1 and
3. This result is particularly interesting, since accurate knowledge over layer
flow-rate data is crucial for parameter estimation techniques [5, 13, 56, 57].

Nonetheless, it is interesting to notice that the formulation proposed by
Barreto et al. was able to provide pressure and pressure derivative curves that
accurately match the other methods, despite the divergence observed in the
layer flow-rate profiles.

Pressure and pressure derivative curves for case B may be seen in Fig.
3.12. Case B presents the same reservoir properties as Case A, except for oil
viscosity. Therefore, the theoretical oil derivative level is now lower than the
water derivative level. The hump in pressure derivative curves that occurs
between t ≈ 0.01 h and t ≈ 0.2 h reflects the existence of skin effects in
reservoirs where flow is favorable to oil [14, 32]. After this derivative hump,
flood front propagates throughout the undamaged zone.

Similarly to Case A, all methods presented a close agreement. The three
analytical formulations converged during the entire test, while the numerical
data presented some slight divergences at early times, when the flood front
is still within the damaged zone. Despite that, the overall agreement is quite
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Figure 3.12: Pressure and pressure derivative curves for Case B

good and all methods converged towards the theoretical water derivative level,
indicating that late-time data can be used to determine the reservoir equivalent
permeability.

Layer flow-rate for Case B are reported in Fig. 3.13. The formulation
suggested in Section 3.2 exhibits an excellent agreement with the solution
developed by Mastbaum et al. [48]. Flow-rates evaluated using these analytical
models show a similar behavior to the numerical simulator flow-rate curves.
Yet, in layers 1 and 3, the match between analytical and simulated data is not
as close as observed in Case A.

On the other hand, flow-rate profiles determined by the solution proposed
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Figure 3.13: Layer flow-rate profiles for Case B (layer 1 in black; layer 2 in
blue; layer 3 in red)
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Figure 3.14: Pressure and pressure derivative curves for case C

by Barreto et al. [16] presented noticeable differences compared to the other
methods. Figs. 3.12 and 3.13 show that the solution from Barreto et al. [16]
provided a good match for pressure data but yielded layer flow-rate profiles
that diverged from the other models, as occurred in Case A.

Pressure and derivative data for Case C may be observed in Fig. 3.14.
The overall behavior is similar to Case A: pressure change presented a close
agreement for all methods, as well as the derivative curves. The blunt derivative
drop at early-times indicates the existence of formation damage. At late-times,
the theoretical derivative level associated with water properties is attained by
all methods.
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Figure 3.15: Layer flow-rate profiles for case C (layer 1 in black; layer 2 in blue)
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In Case C, layer flow-rate curves, portrayed in Fig. 3.15, provide a more
interesting analysis than pressure and derivative data. Fig. 3.15 evidence that
both the formulation proposed in Section 3.2 and the solution presented by
Mastbaum et al. [48] exhibited a great agreement with the numerical data. As
mentioned earlier, accurate evaluation of flow-rates in each layer is helpful to
some interpretation techniques that aim to estimate individual layer properties
[5, 13, 56, 57].

Similar to the previous cases, flow-rates computed using the solution from
Barreto et al. [16] diverged from the other analytical models and from the
numerical simulator. Moreover, the solution from Barreto et al. [16] presented
the most significant variations in layer flow-rates, even though this is the only
analytical model that requires flow-rate to be constant within the swept region.
Despite that, it is interesting to notice the close agreement presented by the
pressure and derivative curves in Fig. 3.14.

Pressure and layer flow-rate profiles displayed in Figs. 3.10 to 3.15 were
employed to estimate layer permeabilities using the Delta Transient Method
[56, 57]. This procedure demands pressure and flow-rate data from only two
distinct time steps, which is a significant operational advantage [56, 57].

In this Section, the late-time logarithmic approximation based on water
properties was employed to evaluate layer permeabilities. For all methods,
pressure and flow-rate data at t = 6.06 h and t = 60.6 h were used to evaluate
layer permeabilities. Figs. 3.10, 3.12 and 3.14 evidence that, for all cases,
a radial flow regime occurs during this time range, since derivative remains
constant.

Skin factors were not estimated in this Section, since pressure change
in reservoirs under water injection exhibit not only a mechanical skin due
to formation damage but also an apparent skin derived from the mobility
contrast within the swept zone [11, 32]. For this reason, the determination of
layer mechanical skins is out of the scope of this work.

Table 3.2 displays the estimated layer permeabilities considering each
approach employed to compute the pressure change. A great accuracy may be
observed in all cases. Moreover, the formulation presented in this thesis yielded
values very close to the estimates obtained from the flow simulator and the
model proposed by Mastbaum et al. [48]. The solution developed by Barreto
et al. [16], in its turn, showed some differences compared to the other models
(particularly in case B), despite presenting a decent accuracy.

These divergences are likely related to the mismatch between layer flow-
rate data. As displayed in Figs. 3.11, flow-rates evaluated using the solution
developed by Barreto et al. [16] diverged from the other approaches, which

DBD
PUC-Rio - Certificação Digital Nº 1812638/CA



Chapter 3. Impulse Functions Applied to Compute Pressure Change During
Injectivity Tests 67

This Work Num. Sim. Mastbaum et al. Barreto et al.
Case True Est. Error Est. Error Est. Error Est. Error

A
500 498 -0.3 493 -1.4 498 -0.3 429 -14.2
600 599 -0.2 589 -1.8 599 -0.2 560 -6.7
700 700 0.0 691 -1.3 700 0.0 767 9.6

B
500 501 0.1 500 0.1 501 0.1 481 -3.7
600 600 0.1 599 -0.2 600 0.1 590 -1.6
700 700 -0.1 700 0.0 700 -0.1 716 2.2

C 500 499 0.2 497 -0.7 499 -0.2 448 -10.4
700 701 0.1 683 -2.4 701 0.1 804 14.8

Table 3.2: Estimated layer permeabilities (values in mD, errors in percentage)

yielded similar flow-rate profiles. These results combined with the higher
errors in layer permeabilities observed in Table 3.2 suggest that layer flow-
rate profiles computed using their model are less accurate than the flow-rate
curves obtained from the other methods.

3.3.2
Results for Single-Layer Reservoirs with Horizontal Wells

A computational implementation of the analytical model presented in
Section 3.2.3 was developed and compared to the solution proposed by Peres
and Reynolds [10] for injectivity tests in single-layer reservoirs with horizontal
wells. Results were also compared to the commercial flow simulator [45].

A cartesian grid composed of 61 x 61 x 9 blocks was employed. Again,
blocks closer to the wellbore were more refined than blocks further from it.
Reservoir grid was 6,000 m wide (x-direction) and 6,300 m long (y-direction).
The wellbore was built parallel to the y-direction. Length (y-direction) of each
block containing the wellbore was set as 100 m, while width (x-direction) and
height (z-direction) were set as 0.89 m. Therefore, the skin zone radius was set
as 0.5 m in the analytical models, so that the damaged region presents the same
cross-sectional area that the numerical simulation grid, as explained in Section
2.4. A hybrid refinement of 4 (radial direction) by 4 (angular direction) by 4
(well axis direction) was employed at all grid blocks containing the wellbore.

The numerical simulator considers an infinite conductivity wellbore,
while both analytical solutions assume uniform influx. As mentioned in Chap-
ter 2, either the average pressure technique [22, 23, 51] or the equivalent pres-
sure point [18, 21, 33, 35] may be applied to obtain the pressure change at an
infinite conductivity wellbore using a formulation that assumes uniform influx.
While the average pressure technique may be more accurate, its implementa-
tion is also more complex. For this reason, in this Chapter, the equivalent
pressure point was employed to obtain the pressure change corresponding to
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Case µo k h L
φ

ks rs S(cP) (mD) (m) (m) (mD) (m)
D 4.8 2000 25 700 0.25 500 0.5 4.8
E 1.1 2000 25 700 0.25 500 0.5 4.8

Table 3.3: Reservoir properties for the cases with horizontal well

an infinite conductivity wellbore. Thus, pressure change in the analytical for-
mulations was evaluated at x = z = rw and y = 0.732 times the wellbore
length, as suggested by Ozkan et al. [18].

Layer properties for the tested cases may be found in Table 3.3. Injection
flow-rate was defined as 5,000 m3/d for Cases D and E. Reservoir properties
are the same in both cases, except for the oil viscosity. The horizontal well was
assumed to be at the center of the layer; that is, no off-centering was considered.
Waterfront radius at the end of the 96h injection period, determined by Eq.
(2-3), was equal to 8.8 m. Thus, the flood front has not yet reached the
reservoir vertical boundaries and the formulation developed in Section 3.2.3
is applicable.

Fig. 3.16 displays the pressure and pressure derivative data for Case D.
Black curves denote the pressure data while the blue curves correspond to the
derivative profile. The model proposed in Section 3.2.3 is indicated by circles.
Triangles represent the numerical simulator and the solid lines correspond to
the solution presented by Peres and Reynolds [10]. The horizontal dashed line
indicates the theoretical pressure derivative profile for early-time radial flow,
computed from Eq. (2-29). At late-times, the flood front is still propagating
in the vertical plane, while pressure diffusion is occurring in the horizontal
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Figure 3.16: Pressure and pressure derivative curves for case D
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Figure 3.17: Pressure and pressure derivative curves for case E

direction. Therefore, a "second radial - first radial" occurs at the end of the
test. The dash-dotted horizontal line stands for the theoretical level for this
flow regime, determined from Eq. (2-31).

A good agreement is observed between all curves. As in Section 3.3.1,
the pressure derivative drop observed at early-times indicates the existence
of formation damage. Pressure derivative for the numerical simulator presents
some oscillations for short times (t ≤ 3 ·10−2 h). These oscillations are possibly
explained by the grid discretization and how the numerical simulator accuracy
to represent a piston-like flow. Despite that, numerical data match well the
analytical models.

It is worthy to mention that, interestingly enough, the proposed formu-
lation based on an unconventional application of Newman’s [54, 55] product
presents a closer match to the simulator derivative curve than the solution de-
veloped by Peres and Reynolds [10] at early-times. Furthermore, all methods
attain the late-time theoretical derivative level.

The results for Case E may be seen in Fig. 3.17. All methods exhibit a
great match not only for pressure but also for derivative data. In Case E, the
derivative curves quickly detach from the early-time theoretical level. Still, the
derivative signature that indicates a late-time radial flow is clearly observed. As
explained in Section 2.3.4, this constant derivative level is useful to determine
the reservoir permeability [6, 33].

Since Case E presents a mobility ratio lower than unity, no derivative
drop is observed. One could expect a derivative hump instead, similar to cases
B and C. However, this hump may be masked by the derivative rise due to the
linear flow regime. Yet, it is interesting to notice once again the close agreement
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presented by the proposed solution, considering the application of Newman’s
[54, 55] product for a non-homogeneous reservoir model.

3.4
Summary and Conclusions

This work proposes an impulse function for two-phase flow in laterally
infinite reservoirs. The proposed formulation applies a radially composite
reservoir approach to represent the flooded zone and the uninvaded region.
The main findings and conclusions of this work are listed below:

– The solution developed in this work does not require flow-rate within
the swept area to remain constant, unlike previous models for injectivity
tests based on the Thompson and Reynolds’ [15] steady-state theory.

– An approximate solution for injectivity tests in single-layer reservoirs
with horizontal wells is also obtained, performing an unconventional ap-
plication of Newman’s product [54, 55], considering a non-homogeneous
domain.

– Pressure data evaluated using the formulation proposed in this work pre-
sented a close agreement when compared to a commercial flow simulator
and to previously existing analytical solutions [10, 16, 48].

– Layer flow-rate profiles evidenced that flow-rates at the wellbore indeed
may change in time, endorsing that, in a rigorous sense, the Thompson
and Reynolds’ [15] theory is not applicable for multilayer reservoirs.

– Results from Section 3.3.2 verify that the unorthodox application of
Newman’s product [54, 55] suggested in Section 3.2.3 was able to provide
a formulation for injectivity tests in single-layer reservoirs with horizontal
wells that matches well the results from a commercial flow simulator and
also the solution developed by Peres and Reynolds’ [10]. A solid proof
to justify the application of Newman’s [54] product using a radially
heterogeneous reservoir model was out of the scope of this work, and
remains as suggestion for further research.

– The proposed model is based on some simplifying hypothesis. Assuming
an infinite acting reservoir and piston-like fluid displacement are likely
the most unrealistic assumptions. Moreover, the results in Section 2.4
assume that the injection flow-rate at the wellbore remains constant.
Overcoming these limitations would also be interesting topics for future
research.
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4
Summary and Suggestions for Future Work

This work has two main goals: the first one is to reach an analytical model
for injection/falloff tests in multilayer stratified reservoirs with multilateral
wells. The second is to evaluate pressure change in reservoirs with vertical
wells using impulse functions.

Chapter 2 outlines how the previously existing solutions for injectivity
tests in single-layer reservoirs [10, 11] can be extended to multilayer stratified
formations with multilateral horizontal wells.

The formulations introduced in Chapter 2 are analogous to the equations
that describe pressure behavior in multilayer formations with vertical wells
[12, 16]. Besides, theoretical levels for pressure derivative were also presented,
according to the several flow regimes that may occur in reservoirs with
horizontal wells. Chapter 2 also shows that the suggested model presented
a good match when compared to a commercial flow-simulator and that
the reservoir equivalent permeability may be estimated from the pressure
derivative profile.

Chapter 3 introduces the developed analytical model based on Green’s
functions for vertical wells. Additionally, an unorthodox application of New-
man’s [54, 55] product is proposed to obtain the pressure change in single-
layer reservoirs with horizontal wells, considering a radially composite reservoir
model.

Results exhibited in Chapter 3 validate the applicability of the proposed
formulation using impulse functions. Chapter 3 also illustrates that layer
flow-rates at the wellbore may change in time. This outcome evidences that,
for multilayer reservoirs, flow-rate within the flooded zone is not necessarily
constant. Thus, the analytical models developed by Barreto et al. [16], Bela
et al. [12] and in Chapter 2 present an inconsistency, as they are based on
the Thompson and Reynolds’ [15] steady-state theory. Moreover, the Delta
Transient Method [56, 57] was successfully applied to estimate individual layer
permeabilities.

The work presented in this thesis also may used as basis for further
research. Some suggestions for future works are given below.

– Apply semilog pressure interpretation techniques, such as Rate-
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Normalized Pressure Analysis [5, 44] or the Delta Transient Method
[56, 57], to estimate individual layer properties based on the pressure
transient data obtained through the formulation proposed in this work
for injectivity tests in multilayer reservoirs with multilateral horizontal
wells;

– Alternatively, the developed formulations may also be coupled to history
matching procedures in order to estimate reservoir parameters.

– Extend the formulation presented in Chapter 3 for injectivity tests in
single-layer reservoirs so that it can be applied to multilayer reservoirs
with multilateral horizontal wells. The model presented in Chapter 2 may
be used as benchmark in this case;

– Develop the solution for the falloff period using impulse functions based
on the model proposed in Chapter 3;

– Adapt the formulation presented in Chapter 3 to handle the flood front
more accurately than assuming piston-like fluid displacement;

– Provide a more rigorous proof for why the application of Newman’s
[54, 55] product suggested in Section 3.2.3 works and verify if its possible
application for other non-homogeneous domains.
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A
Single-Phase Flow Through Multilateral Horizontal Wells

This Appendix briefly presents the solution for single-phase flow in single-
layer reservoirs with horizontal wells, presented by [21] and [18]. Then, we
extend this solution to multilayer systems, as proposed by [31]. The same
simplifying hypotheses made in section 2.3 will be hereafter assumed.

A.1
Single-Phase Flow in Single-Layer Reservoirs

The solution for single-phase flow in single layer reservoirs is well known
[21, 18]. Considering that the wellbore heel is positioned at coordinates
(x1, y1, z1) and applying Newmann’s product, the pressure change ∆p at a
given time t may be decomposed as the product of three terms, such that each
term is associated to flow in a given direction [33]:

∆p(x, y, z, t) = q

Lφct

t∫
0

∆px(x, τ)∆py(x, τ)∆pz(x, τ)dτ. (A-1)

In Eq. (A-1), q stands for the flow-rate and the wellbore length is
represented by L, while φ and ct denote the porosity and total compressibility,
respectively. Eq. (A-1) represents the time integral of all instant pressure
variations at a given point with coordinates (x, y, z) due to the source point
productions along the well. Instant pressure change in x-direction is given by
[21, 18]:

∆px(x, t) = 1
2
√
πηxt

exp
(
−(x− x1)2

4ηxt

)
, (A-2)

where ηx = kx/φµct stands for the hydraulic diffusivity coefficient in x-
direction. Analogous hydraulic diffusivity coefficients are also defined in y and
z-directions.

In y-direction, the contribution of all point sources along the wellbore
must be accounted for. Thus, considering that the wellbore section open to
flow goes from y = y1 to y = y1 + L:
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∆py(y, t) =
y1+L∫
y1

1
2√πηyt

exp
(
−(y − y1)2

4ηyt

)
dy =

= 1
2

[
erf
(
y1 + L− y

2√ηyt

)
− erf

(
y1 − y
2√ηyt

)]
.

(A-3)

Vertically, the reservoir is finite. Therefore, the images method must be
applied in z−direction [33]. Thus, denoting the reservoir thickness as h and
the smallest distance between the wellbore and a vertical boundary as dz:

∆pz(z, t) = 1
2
√
πηzt

[ ∞∑
n=−∞

exp
(
−(2nh)2

4ηzt

)
+ exp

(
−(2nh− 2dz)2

4ηzt

)]
. (A-4)

Eqs. (A-1) to (A-4) are achieved assuming uniform flux, that is, flow-rate
per unit length is constant along the well. However, flow in horizontal wells is
more accurately depicted by the infinite conductivity hypothesis, which states
that pressure is constant along the wellbore (instead of fluid in flow). Pressure
behavior in an infinite conductivity well may be estimated from a uniform
influx model, using the average pressure technique or the equivalent pressure
point method [4, 21, 18, 22, 34].

It is important to notice that Eq. (A-1) does not account for skin effects.
In reservoirs with formation damage, an additional term must be included to
Eq. (A-1):

∆p(x, y, z, t) = q

Lφct

t∫
0

∆px(x, τ)∆py(x, τ)∆pz(x, τ)dτ + qµ

L
√
kzkx

S. (A-5)

A.2
Single-Phase Flow in Multilayer Reservoirs

Some authors have presented analytical solutions for multilateral horizon-
tal or slanted wells [29, 30, 28, 31]. Most of these formulations, however, depict
pressure behavior in single-layer reservoirs. The model developed by [31], on
the other hand, is applicable on both single- and multilayer formations.

The formulation starts by applying Eq. (A-1) into a given layer j:

∆pj(x, y, z, t) = qj
Ljφjctj

t∫
0

∆pxj(x, τ)∆pyj(y, τ)∆pzj(z, τ)dτ. (A-6)

where the directional pressure changes are computed analogously to Eqs. (A-2)
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to (A-4).
Assuming that layer flow-rate behavior may be considered constant

between two consecutive time steps and that the superposition principle holds,
then Eq. (A-6) becomes:

∆pj(ti) =
i∑

k=1

qkj − qk−1
j

Ljφjctj

ti∫
tk−1

∆pxj(x, τ)∆pyj(y, τ)∆pzj(z, τ)dτ. (A-7)

For an infinite conductivity wellbore, pressure is the same in all branches.
Moreover, mass balance inside the well states that the sum of each individual
lateral flow-rate must equal the total production flow-rate. Thereby, it is
possible to build a linear system to determine flow-rate in each well branch:

n∑
j=1

qj = q

pj(ti) = pj+1(ti), ∀j = 1 . . . n− 1,∀i
(A-8)

Thus, at each time step, the linear system defined in Eq. (A-8) must
be updated and solved, so that flow-rate in each layer is determined. Then,
the wellbore pressure behavior may be computed by evaluating the pressure
change in any given layer.

It is important to recall that Eqs. (A-6) to (A-8) derive from the
formulation proposed by [21] and [18], which assume uniform flux. Therefore,
each wellbore branch required to build the linear system defined in Eq. (A-8)
is considered to be a uniform flux branch.

In their work, [31] suggested that each well branch could be discretized
into several uniform influx segments, to describe more accurately an infinite
conductivity well. This, however, increases the linear system order, as more
equations are needed. In our work, wellbore pressure change was evaluated
using the average pressure technique at each time step, after layer flow-rates
have been determined.
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B
Sketch Proof to Justify the Application of Newman’s Product

Flow throughout the reservoir model depicted in Figs. 3.7 and 3.8 is
described by the following PDE:

∂2∆pi
∂y2 + 1

r

∂

∂r

(
r
∂∆pi
∂r

)
− 1
ηi

∂∆pi
∂t

= 0, (B-1)

where i indexes the region. Consider for convenience that the flooded zone is
already ahead of the damaged region. Then, applying the radially composite
model described in Section 3.2, the reservoir may be split into three regions:

Region 1: rw < r < rskin and |y| < L/2

Region 2: rskin < r < rF (t) and |y| < L/2

Region 3: r > rF (t) or |y| > L/2

Let ∆py(y, t) be the solution of the following one-dimensional PDE:

∂2∆p
∂y2 −

1
η

∂∆p
∂t

= 0, (B-2)

Note that ∆py(y, t) represents the solution for a one-dimensional flow in
y-direction, such as represented in Fig. B.1.

Now, let Gw(r, t) be the solution of the following one-dimensional PDE:

1
r

∂

∂r

(
r
∂∆pi
∂r

)
− 1
ηi

∂∆pi
∂t

= 0. (B-3)

Gw(r, t) represents the solution for a one-dimensional flow in r-direction
for a radially heterogeneous reservoir, such as represented in Fig. B.2. By

Figure B.1: Schematics of the one-dimensional flow in y-direction
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Figure B.2: Schematics of the one-dimensional flow in r-direction

construction, the heterogeneities in r-direction are already accounted for in
the Gw function.

Now, define ∆p(y, r, t) = ∆py(y, t)Gw(r, t). Then, taking the second
derivative of ∆p(y, r, t) with respect to y:

∂2∆p(y, r, t)
∂y2 = ∂2∆py(y, t)

∂y2 Gw(r, t) (B-4)

Taking the second derivative of ∆p(y, r, t) with respect to r:

∂2∆p(y, r, t)
∂r2 = ∆py(y, t)

∂2Gw(r, t)
∂r2 (B-5)

Taking the derivative of ∆p(y, r, t) with respect to t:

∂∆p(y, r, t)
∂t

= ∂∆py(y, t)
∂t

Gw(r, t) + ∆py(y, t)
∂Gw(r, t)

∂t
(B-6)

Then, replacing Eqs. (B-4) to (B-6) into Eq. (B-1):

∂2∆py
∂y2 Gw + ∆py

∂2Gw

∂r2 −
∂∆py
∂t

Gw −∆py
∂Gw

∂t
= 0 (B-7)

Rearranging Eq. (B-7):

Gw

[
∂2∆py
∂y2 − ∂∆py

∂t

]
︸ ︷︷ ︸

=0, from Eq. (B-2)

+∆py
[
∂2Gw

∂r2 −
∂Gw

∂t

]
︸ ︷︷ ︸

=0, from Eq. (B-3)

= 0 (B-8)

Therefore, ∆p(y, r, t) = ∆py(y, t)Gw(r, t) satisfies the PDE given by
Eq. (B-1). The computations made in this Appendix are analogous to the
proof presented by Newman [54] and Carslaw and Jaeger [55] to justify the
application of Newman’s [54] product in homogeneous domains. This Appendix
shows that the formulation presented in Section 3.2.3 is valid. However, a more
sound proof would still be an interesting topic for further research, specially
to verify if Newman’s [54] product may also be applied for a general non-
homogeneous domain (or, alternatively, establish the conditions required for
Newman’s [54] product to be applied in non-homogeneous domains).
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